
Building User Interfaces

React 1
An Introduction

Professor Bilge Mutlu
© Building User Interfaces | Professor Mutlu | Week 03: React — 1 1

Disclaimer
As with JS, this is not a comprehensive introduction to React, so
below are links to great additional resources:

» ReactJS.org

» W3 Schools

» Build with React

» Tania Rascia's React Overview and Walkthrough

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 2

What we will learn today?
» History and overview of React

» Overview of building blocks

» Setting up a React project

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 3

TopHat Attendance

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 4

TopHat Questions

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 5

Why should we use
React?

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 6

What is React?1

Definition: Also called ReactJS, React is a JS library for building
user interfaces.

» Developed by Facebook, dating back to 2010.

» Started as an internal development tool, then open-sourced in
2013.

1 More on the history of React

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 7

Refresher: Document
Object Model

Definition: Document Object Model
(DOM) translates an HTML or XML
document into a tree structure
where each node represents an
object on the page.

Source2

2 Wikipedia: DOM

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 8

Top
child

sibling
header

content

Refresher: DOM Programming Interface

» Objects: HTML elements, such as a paragraph of text.

» Property: Value that we can get or set, such as the id of an
element.

» Method: An action we can take, such as adding or deleting an
HTML element.

For JS to interact with user-facing elements, we first need to
access them...

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 9

Refresher: Accessing HTML elements

Most common way of accessing content is getElementById().

<p id="userName"></p>

<script>
 document.getElementById("userName").innerHTML = "Andy Schoen";
</script>

We can also find elements using tag name, class name, CSS
selectors, and HTML object collections.

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 10

A unique ids

A singular response

Refresher: Manipulating HTML elements

Changing content:

document.getElementById("userName").innerHTML = "Andy Schoen";

Changing attributes:

document.getElementById("userImage").src = "Headshot.png";
document.getElementById("userName").style.color = "red";

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 11

Refresher: DOM Events

DOM provides access to HTML events, such as onclick, onload,
onunload, onchange, onmouseover, onmouseout, onmousedown,
onmouseup, formaction.

We can register functions to events using inline event handlers,
DOM on-event handlers, and using event listeners.

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 12

What's wrong with this approach?3

» Working with HTML DOM is slow

» The DOM for single-page applications (SPAs) can be huge

» Needle in a haystack

» Interactive applications require a large number of and
frequent updates on DOM elements

» Inefficient updating

3 React Kung Fu

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 13

0

tons of ids etc

Solution: The Virtual DOM4

Definition: The virtual DOM is a virtual representation of the
user-facing elements that are kept in memory and synced with
the real DOM when DOM elements are updated.

4 Image source

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 14

Memory
based
representation

More on the solution:
Reconciliation5

Definition: Reconciliation is the
process of di!ng and syncing the
virtual and real DOM to render
changes for the user.

5 Image source

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 15

And differences
and patch asneeded

6

6 Source

16

child changes
too

d
go

What are the benefits?

» Incredibly fast, as only what is updated in the Virtual DOM is
updated in the real DOM

» Abstracts away interactions with DOM: declarative programming

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 17

you
don't have

to
manually

change

the DOM
Youjust

specify what
it

s
be

Detour: Declarative vs. imperative
programming

Definition: Imperative programming expresses how the
computation must flow.
 - Programming how to get the outcome we want.

Definition: Declarative programming expresses the logic of a
computation without describing its flow.
 - Programming what we want the outcome to be.

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 18

ima DOM

Imperative example:7

var ages = [32, 45, 16, 67];
function checkEligibility() {
 for (i = 0; i < ages.length; i++) {
 if (ages[i] < 18 || ages[i] > 65) {
 console.log('Every one is not eligible');
 return false; } }
 console.log('Every one is eligible');
 return true; }

Declarative example:
var ages = [32, 45, 16, 67];
function checkEligibility() {
 console.log(ages.every(age => age >= 18 && age <= 65)
 ? 'Every one is eligible' : 'Every one is not eligible'); }

7 See working example in CodePen

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 19

every
checks

that
all
entries

we
are

what
it
should loganonyffffinion only

specifies

Let's get back to React

» React assumes declarative programming

» We only care about the outcome we want to see

» The ReactDOM library takes care of reconciliation and updating
user-facing content under the hood

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 20

8

8 Source: illustrated.dev

21

9

9 Source: illustrated.dev

22

Ok, that's why we
should use React!

The name comes from reacting to events.

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 23

TopHat Quiz

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 24

Building Blocks

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 25

Core Components

React elements and components are the two fundamental building
blocks React uses to represent and change all user-facing context
and events.

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 26

React Elements

Definition: A React element is a light, stateless, immutable,
virtual representation of a DOM Element.

React elements are JS objects, thus browser-independent, until
they are rendered. Once they are rendered, they become DOM
elements.10

var root = React.createElement('div');
ReactDOM.render(root, document.getElementById('example'));

10 List of ReactElements

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 27

React Elements, Continued

If React elements are immutable, how do we update the page?

Think of an element as a single frame of a movie, which
represents the page at a certain point in time. To update the
page, we create and render a new element.

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 28

React.Component

Definition: A React component is a function or class that accepts
an input and returns a React element.

class Welcome extends React.Component {
 render() {
 return <h1>Hello, {this.props.name}</h1>;
 }
}

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 29

React.Component, Continued

Components work like JS functions; they accept props and return
React elements that correspond to what will be rendered in the
DOM.

Each component is encapsulated (one component per file) and
can operate independently, affording modularity.

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 30

nodowmponent

acoramkporn bananoefponent

aEooiET
g

Estmponent

sidebar

render()

Definition: render() returns a React element to be displayed on
the page. Think of what you would like to see on the screen to
determine what should go in render().

There are two render() methods in React: ReactDOM.render() and
Component.render().

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 31

compo

ReactDOM.render()11

ReactDOM.render(element, container) mounts the declared
element as a child to the specified container in the DOM.

const element = <h1>Welcome to React</h1>;
ReactDOM.render(element, document.getElementById('root'));

11 See in CodePen

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 32

you
can useremember
these

Component.render()12

Component.render() creates the virtual DOM representation of the
contents of the React component. And then, we call
ReactDOM.render() to mount the elements on the DOM.
class App extends React.Component {
 render() {
 return (
 <div>
 <h1 className="App-title">Welcome to React</h1>
 </div>
);
 }
}
ReactDOM.render(<App />, document.getElementById("root"));

12 See in CodePen

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 33

spooky
structure
here

props and states

Definition: props, or properties, are the arbitrary input provided
into React components that utilize them to render content.

Components should never modify props; they are read-only and
immutable.

Definition: state is similar to props, but they are fully private
and controlled by the component.

state is what helps us keep track of changes in data.

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 34

Usage: props13

Props are passed into functions as arguments, e.g.:

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}
const element = <Welcome name="Andy" />;
ReactDOM.render(element, document.getElementById('root'));

Reference using this.props within the component.

13 See in CodePen

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 35

2
r

Usage: state14

States are defined and manipulated within components, e.g.:

class Welcome extends React.Component {
 constructor(props) {
 super(props);
 this.state = {date: new Date()};
 }
}

The state can be referenced using this.state and changed using
this.setState(). More on this later...

14 See in CodePen

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 36

muss be
Yondratiefhis

JSX

Definition: A preprocessor step that adds XML syntax to
JavaScript. JSX declarations produce React elements.

<div className="red">Text</div>;

... is compiled into ...

React.createElement("div", { className: "red" }, "Text");

Babel15 is the preprocessor that compiles JSX into JS.

15 See example in Babel REPL

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 37

Javascript t XML

JSX, Continued

» JSX is not required, but makes React programming extremely
effective

» Any JS expression can be included in JSX

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 38

Detour: Naming
Conventions16

Definition: camelCase involves
writing phrases such that each
word begins capitalized with no
spaces/punctuation.

Definition: hyphen-case (aka kebab-
case) involves writing phrases in
lower case and using a hyphen as a
separator.

16 Wikipedia

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 39

Detour: Naming Conventions, Continued

Definition: PascalCase capitalizes all words with no spaces/
punctuation.

» ReactDOM and JSX use camelCase

» React components use PascalCase

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 40

Setting up a React
project

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 41

Setting up a React project
In the development environment

What you will need: terminal, coding environment, Node.js

npm install -g create-react-app

npx create-react-app <your-app-name>
cd <your-app-name>
npm start

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 42

automatically
generate
a simple

starting

µ
point

flange Directory
to

the app
folderrestore app

Setting up a React project
In a sandbox

Simple React application:17

1. set sandbox settings to Babel preprocessor
2. import react and react-dom CDNs

React project:
- Create a project using a template / upload your project

17 See example in CodePen

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 43

What did we learn today?
» History and overview of React

» Overview of building blocks

» Setting up a React project

© Building User Interfaces | Professor Mutlu | Week 03: React — 1 44

