
Building User Interfaces

React 3
Component Lifecycle

Professor Bilge Mutlu
© Building User Interfaces | Professor Mutlu | Week 06: React — 3 1

What we will learn today?
» Let's build an app!

» The component lifecycle

» Assignment Preview

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 2

TopHat Attendance

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 3

TopHat Questions

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 4

Let's build an
application

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 5

What will we need?
» Node.js, ReactJS, terminal, code environment, browser

» Adobe XD, Zeplin

» Data from APIs:

» https://randomuser.me/

» http://www.randomtext.me/api/

Let's build!

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 6

https://randomuser.me/
http://www.randomtext.me/api/

The Component
Lifecycle

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 7

The Component Lifecycle1

1 Wojciech Maj

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 8

http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

The Component Lifecycle2 3 is made up of three actions:

1. Mounting

2. Updating

3. Unmounting

Each action has a number of lifecycle methods associated with it
and render and commit phases.

We will use a StackBlitz to illustrate all three actions.4

4 See on StackBlitz

3 The (new) React lifecycle methods in plain, approachable language

2 ReactJS.org: React.Component

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 9

https://stackblitz.com/edit/react-kakvdc?file=index.js
https://blog.logrocket.com/the-new-react-lifecycle-methods-in-plain-approachable-language-61a2105859f3/
https://reactjs.org/docs/react-component.html

Mounting

Definition: Mounting is the process of creating an instance of a
component and inserting it into the DOM.

Commonly used mounting lifecycle methods:

1. render()

2. constructor()

3. componentDidMount()

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 10

Mounting: render()

render() is the only required method within a class component,
reading this.props and this.state and returning:

» React elements, adding a single element to the container

» Arrays & fragments, rendering multiple elements

» Portals, adding children to a DOM subtree

» String & numbers, rendering text nodes in the container

» Booleans | null, rendering nothing

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 11

Mounting: render(), continued

render() has to remain pure, executing exactly the same way
every time:

» no state updates are allowed within render()

» render() does not interact with the browser

Interactions with the browser should happen in other lifecycle
methods.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 12

Mounting: render(),
continued

What will happen if setState() is

called in render()?

» Infinite loop > Stack overflow

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 13

Mounting: constructor()

constructor() is only needed to inherit props, to initialize state,
and to bind event-handling functions.

super(props) should be called before any other statement, and all
other statements should come after it.

constructor() is the only place where we should directly assign
state using this.state = { key: value }, and this.setState()
method should not be used here.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 14

Mounting: constructor(), continued

constructor(props) {
 // inherit props
 super(props);
 // set states
 this.state = { key: 'value' };
 // bind event-handling functions
 this.handleClick = this.handleClick.bind(this);
}
© Building User Interfaces | Professor Mutlu | Week 06: React — 3 15

Mounting: componentDidMount()

componentDidMount() is automatically called as soon as the
component is mounted following render().

This give us an opportunity to do anything we did not want to do
in render(), e.g., to initiate API calls, request data, etc, before the
browser is updated.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 16

Pro Tip: Unlike in render(), setState() method can be used in
componentDidMount(). setState() will trigger a re-render before
the browser reflects the update. State updates here should be
used sparingly (e.g., to determine where a tooltip should be
rendered) to maintain performance.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 17

Updating

Definition: Updating involves re-rendering a component
following changes to props or state.

Commonly used updating lifecycle methods:

1. render()

2. componentDidUpdate()

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 18

Updating: componentDidUpdate()

componentDidUpdate(prevProps, prevState, snapshot) is invoked
as soon as there is an update.

Again, this is an opportunity to do anything we do not want to do
within render(), e.g., placing network requests.

componentDidUpdate(prevProps) {
 if (this.props.userName !== prevProps.userName) {
 this.fetchData(this.props.userName);
 }
}

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 19

Unmounting
Definition: Unmounting involves removing a component from the
DOM.

Unmounting lifecycle method:

1. componentWillUnmount()

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 20

Unmounting: componentWillUnmount()

componentWillUnmount() is invoked as soon as a component is
unmounted — an opportunity to perform any necessary cleanup,
e.g., resetting counters, invalidating timers, canceling network
requests.

setState() method should not be called within
componentWillUnmount() as it will never be rendered.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 21

Key considerations in using state

Why is state so important?

Remember that a state update is how React knows that a
component needs to be re-rendered. Once an application is
loaded, all React does is to monitor changes to state and re-
render components based on the changes.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 22

How state should be updated

State should not be modified directly. The following will not re-
render the component:

this.state.TAName = 'Andy';

We must use setState():

this.setState({TAName: 'Andy'});

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 23

Considering asynchronous updates

Because React may batch-process state updates to improve
performance, state and props may be updated asynchronously.
Former may not update the counter, but the latter will.

Because updates may be asynchronous, subsequent attempts to
access the state may not provide updated information.

this.setState({ counter: this.state.counter + 1 });
console.log(this.state.counter);

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 24

May not increment:

this.setState({
 counter: this.state.counter + this.props.increment
});

Will ensure increment:

this.setState((state, props) => ({
 counter: state.counter + props.increment
}));

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 25

Complex state manipulations5 6

» Adding to and removing from arrays

» State updates from children

6 A good article on managing state with arrays

5 See in solutions CodePen

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 26

https://www.robinwieruch.de/react-state-array-add-update-remove
https://www.robinwieruch.de/react-state-array-add-update-remove
https://www.robinwieruch.de/react-state-array-add-update-remove
https://codepen.io/bmutlu/pen/WNNvdJW?editors=0011

Assignment Preview

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 27

Some Announcements

» We have made changes to the upcoming build assignments

» React 3 will be the final deliverable; due in 2.5 weeks

» React 4 will be extra credit; due at the same time

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 28

React 3

Deliverable options for React 3:

1. Course recommender application

2. Course planner application

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 29

React 3: Recommender

Problem 1

Load in a json file of previous courses located at https://
mysqlcs639.cs.wisc.edu/classes. The user should be able to view the
contents at this url as courses that the user has previously taken.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 30

https://mysqlcs639.cs.wisc.edu/classes
https://mysqlcs639.cs.wisc.edu/classes

Problem 1: Suggested Workflow

1. Fetch data from server

2. Create a new component to represent previously taken
courses. This component will look somewhat like the Course
component, but it will be simpler and won’t have options to
add the course to the cart.

3. Create a new component to hold the previously taken courses.
Make this component accessible from the app (maybe another
tab on the top or a tab within the cart page).

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 31

Problem 2

Create a rating system for previously taken courses. The user should be
able to rate some or all of the previously taken courses loaded from the
json file.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 32

Problem 2: Suggested Workflow

1. Create a component for rating a specific course.

2. Create a component for holding all of the rating components.

3. Make the holder accessible from the search tab.

4. Save the data from the holder in the state of the lowest
ancestor of any component that will need it

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 33

Problem 3

Create a way for the user to select areas of interest that you define.
These areas can be general or specific. Some examples might be
computer science, artificial intelligence, or science.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 34

Problem 3: Suggested Workflow

1. Generate a list of interest areas based on the course data.

2. Create a component for the user to select interest areas as
defined in step 1.

3. Make this component accessible from the search tab.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 35

Problem 4

Recommend courses to the user based off of the rated previously taken
courses and the user's specified interest areas.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 36

Problem 4: Suggested Workflow

1. Create the recommender algorithm that takes in the rated
courses and interest areas, searches through subjects and
keywords, and returns courses most similar to the highly
rated courses and the courses that match the most interest
areas.

2. Display the recommended courses to the user.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 37

React 3: Planner

Problem 1

Based on the courses that the user has added to the cart, allow the user
to select any subset of courses, sections, and subsections to later
generate all possible schedules for. The user should be able to select 3
slight variations of course information for planning:
1. A course with all sections and subsections
2. A course with one specific section of a course with all subsections
3. A course with one specific section that contains one specific
subsection

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 38

Problem 1: Suggested Workflow

1. Create a new planner tab

2. Create a component that displays all of the courses, sections,
and subsections in the cart with check boxes next to each one

3. Store the data of what is checked to make the check boxes
related (if a course is checked, all of its sections and
subsections will also be checked)

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 39

Problem 2

Based on the selections from problem 1, generate all possible schedules
for the courses.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 40

Problem 2: Suggested Workflow

1. Create a function to generate all of the possible schedules
based on the data from PlannerSidebar

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 41

Problem 3

Create a way for the user to go through and view all of the possible
schedules generated.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 42

Problem 3: Suggested Workflow

1. With the provided components, create a Schedule component
that displays a generated schedule

2. Create two buttons to switch between schedules by changing
the data that is sent to the Schedule component

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 43

Implementations will be evaluated for:

» Build: efficiency, elegance, clean, and readable

» Design: usability, visual design, navigation model

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 44

My Simple Recommender

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 45

My simple recommender, constraints

Requirements:

» Users are given a set of elements to evaluate

» Evaluations are standardized into a ranking scheme

» The ranking scheme is used to look up matches

» Top match is returned as a recommendation

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 46

My simple recommender, design decisions

Design decisions:

» Give the user a randomly generated set of swatches

» Allow users to provide like/dislike ratings

» Average out the colors of liked swatches

» Give the user a recommend swatch with the average

Italics indicate the simplest possible implementation.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 47

My simple recommender, component structure

<App />
 <Swatch />
 ...
 <RecommendedSwatch />

Plus, possibly a function component for ranking.

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 48

Planner visualization starter component7

The started code will give the base code to visualize courses on a
given day, which you can extend to build the planner.

7 See on StackBlitz

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 49

https://stackblitz.com/edit/react-71oqwg?file=index.js

A few pieces of advice

» Start early

» Google (or Bing, DuckDuckGo, etc.) is your friend

» E.g., even if we cover correct syntax in class, slides are not
useful for debugging

» Use debugging tools

» Compiler errors, React Development Tools, console.log()

» Come to office hours (early)

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 50

What did we learn today?
» Let's build an app!

» The component lifecycle

» Assignment Preview

© Building User Interfaces | Professor Mutlu | Week 06: React — 3 51

