
Building User Interfaces

React 4
Advanced Concepts

Professor Bilge Mutlu
© Building User Interfaces | Professor Mutlu | Week 07: React — 4 1

 



What we will learn today?
» Optimizing performance in React

» Advanced asynchronous updating

» APIs for advanced interaction

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 2



TopHat Attendance

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 3



TopHat Questions

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 4



Optimizing 
Performance in React

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 5



Why do we need to worry about 
performance?1

As the complexity of your 
application scales, performance 
will necessarily degrade.

Why? And what do we do about it?

1 Image Source: Noam Elboim

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 6

smooth frames
missing

animations



2

2 Image Source: William Wang

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 7



2

2 Image Source: William Wang

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 8



2

2 Image Source: William Wang

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 9

still haveto
cheek for changes



Why does React do that?

That's how React works!

We discussed in React 1 that the diffing within Virtual DOM—
reconciliation—is what makes it fast, but when things are scaled 
up, continuous diffing and updating affects performance.

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 10



How do we know that?

Performance tools: React provides a powerful library, react-
addons-perf,3 for taking performance measurements.

import Perf from 'react-addons-perf';
Perf.start()
// Our app
Perf.stop()

3 ReactJS.org: Performance tools

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 11

start the monitor

stop the monitor



Useful Perf methods

» Perf.printInclusive() prints overall time taken.

» Perf.printExclusive() prints time minus mounting.

» Perf.printWasted() prints time wasted on components that 
didn't actually render anything.

» Perf.printOperations() prints all DOM manipulations.

» Perf.getLastMeasurements() prints the measurement from the 
last Perf session.

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 12



Perf.printInclusive() and Perf.printWasted() output:4

4 Image Source: Daniel Park

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 13



We can also visualize the performance of all components:5 6

6 Image source

5 An advanced guide to profiling performance using Chrome Devtools

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 14

79

chomegerfoots



How to eliminate time wasted?
By avoiding reconciliation, i.e., only rendering when there is 
actually an update, using shouldComponentUpdate().

Definition: For components that implement 
shouldComponentUpdate(), React will only render if it returns true.

function shouldComponentUpdate(nextProps, nextState) {
    return true;
}

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 15



7

7 Image source

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 16



An example of shallow comparison to determine whether the 
component should update:

shouldComponentUpdate(nextProps, nextState) {
    return this.props.color !== nextProps.color;
}

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 17



Detour: Shallow vs. Deep 
Comparison8

Shallow Comparison: When each 
property in a pair of objects are 
compared using strict equality, e.g., 
using ===.

Deep Comparison: When the 
properties of two objects are 
recursively compared, e.g., using 
Lodash isEqual().

8 Image source

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 18

we
the

object

must
be
the
same

if
false

it
must

if
is

differentga
even Id
charmwithin

recursively compares
the properties



React.PureComponent

React provides a component called PureComponent that 
implements shouldComponentUpdate() and only diffs and updates 
when it returns true.

Note that any child of PureComponent must be a PureComponent.

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 19



Other Ways of Optimizing Performance

» Not mutating objects

» Using immutable data structures

» Using the production build of React

» Many more,...

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 20

b



Further Reading on React Performance

» 21 Performance Optimization for React Apps

» Efficient React Components: A Guide to Optimizing React 
Performance

» ReactJS.org: Optimizing Performance

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 21



TopHat Questions

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 22



Advanced 
Asynchronous 

Updating

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 23



Getting data within componentDidMount()

Ideally, we want to interact with the server in the following way. 
What would happen here?

componentDidMount() {
  const res = fetch('https://example.com')
  const something = res.json()
  this.setState({something})
}

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 24



But we end up following up fetch() with a series of then()s.

componentDidMount() {
  fetch('https://example.com')
    .then((res) => res.json())
    .then((something) => this.setState({something}))
}

then() allows us to program asynchronously (by allowing 
componentDidMount() to wait for the Promise to be resolved). 
Although, this syntax can be unintuitive and not readable.

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 25

expressive but can get hard
to understand



Programming asynchronously using async/await

async/await provides syntax to program asynchronously in an 
intuitive and clean way.

Usage:

» async function() denotes that the function() will work 
asynchronously.

» await expression enables the program to wait for expression 
to be resolved.

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 26

newer syntax



Example:9

async componentDidMount() {
  const res = await fetch('https://example.com')
  const something = await res.json()
  this.setState({something})
}

9 See in CodePen

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 27

a sync



async Functions10

Any function can be asynchronous and use async. Useful where 
the function has to wait for another process.

async addTag(name) {
    if(this.state.tags.indexOf(name) === -1) {
        await this.setState({tags: [...this.state.tags, name]});
        this.setCourses();
    }
}

10 See example in CodePen (line 70)

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 28



APIs for advanced 
interaction

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 29



Interaction Libraries

» react-beautiful-dnd: Examples

» react-smooth-dnd: Demo

» React DnD: Examples

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 30

Drag and

Drop
Libraries



Component Libraries

» Material UI

» Material Kit React: Demo

» Rebass

» Grommet

» React Desktop : Demo

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 31

Google
3 small
3 used by lots of web apps

behaves like
desktop applications



Managing Data

» React Virtualized: Demo

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 32

stress
testing



What did we learn today?
» Optimizing performance in React

» Advanced asynchronous updating

» APIs for advanced interaction

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 33



Assignment Q & A

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 34



Midterm Q & A

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 35


