Building User Interfaces

React 4

Advanced Concepts
Professor Bilge Mutlu

What we will learn today?

> Optimizing performance in React
> Advanced asynchronous updating

> APIs for advanced interaction

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

T

TOP AAT

TopHat Attendance

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

T

TOP AAT

TopHat Questions

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

Optimizing
Performance 1n React

Why do we need to worry about

performance?’

' ‘ Click me to open/@lose ’ ‘ Click me to open/close ’
As the complexity of your
application scales, performance T A
will necessarily degrade. W\ Yo
Why? And what do we do about it?

What you want vs What you get

'Image Source: Noam Elboim

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 6

] Q toptal

0 oo

OJOJOXOMOIOXOXOMOIOXOROMOIOXOXO,

>Image Source: William Wang

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

] Q toptal

LN M

OJOJOXOMOIOXOXOMOIOXOAOMOIOXOXO,

>Image Source: William Wang

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

] Q toptal

o
Wﬁmrowa

0 @@

OJOJOIOMOIOXOXOMOIOXOXOMOIOROXO,

>Image Source: William Wang

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 9

Why does React do that?

That's how React works!

We discussed in React 1 that the diffing within Virtual DOM—
reconciliation—is what makes it fast, but when things are scaled
up, continuous diffing and updating affects performance.

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

10

How do we know that?

Performance tools: React provides a powerful library, react-
addons-perf,® for taking performance measurements.

import Pexf from 'react-addons-perxf';

Perf.start() ‘6\\5‘}1/} Do sl

Perf.stop() </zf W, W\OV\WﬁV

>React]S.org: Performance tools

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

1

Useful Pexrf methods

> Perf.printInclusive() prints overall time taken.
> Perf.printExclusive() prints time minus mounting.

> Perf.printWasted() prints time wasted on components that
didn't actually render anything.

> Perf.printOperations() prints all DOM manipulations.

> Perf.getlastMeasurements() prints the measurement from the
last Perf session.

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 12

Perf.printInclusive() and Perf.printWasted() output:*

(index)

W ® NV B WN e

10
» Array(11)

(index)
0

Bw N e

» Array(5)

Owner > Component

"App > RecipesContainer"
"RecipesContainer > Route"
"Route > recipelist"
"recipelist > recipeShow"
"recipeShow > AddToPlanner"
"AddToPlanner > t*

"t > t"

"recipelList > Link"
"RecipesContainer > Planner"
"recipeList > recipeSearch"

"recipelList > Route"

Owner > Component
"recipelist > Link"
"RecipesContainer > Planner"
"recipelist > recipeSearch"
"RecipesContainer > Route"

"recipelList > Route"

Inclusive render time (ms)
21.49
20.58
208.51
12.42
6.31
4.86
0.5%8
0.42
0.27
0.1
0

Inclusive wasted time (ms)
0.42

0.27

0.1

0

0

Instance count

e - e T = = R SR

Instance count

T

ReactPerf.js:32
Render count

[I - S L

ReactPerf.js:32
Render count

T

4Image Source: Daniel Park

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

13

We can also visualize the performance of all components:®°

_ ’ — %
Connect(DockMonitor) (update) (7_\! v\ _Connect(RepoPage) (update)
DockMonitor (update) RepoPage (update)
Dock (update) ' ' ' List (update)
LogMonitor (update)

LogMonitorEntrylist (update)
LogMonitorEntry (mount)
LogM...unt) JSONTree (mount)
JSON...nt) Un..) U...
Unk...t) s s

JSO...1) QJ,% *.Oglg

5 An advanced guide to profiling performance using Chrome Devtools

®Image source

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

How to eliminate time wasted?

By avoiding reconciliation, 1.e., only rendering when there is
actually an update, using shouldComponentUpdate().

Definition: For components that implement
shouldComponentUpdate(), React will only render if it returns true.

function shouldComponentUpdate() A

return true;

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 15

() No Reconciliation needed

5
~—

O Reconciliation needed

(C8 : ;SCU
. vDOMEq

scu shouldComponentUpdate?
Scu

VDOMEq o \itual DOMs equivalent?
vDOMEq

7Image source

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

16

An example of shallow comparison to determine whether the
component should update:

shouldComponentUpdate(nextProps, nextState) {

return this.props.color !== nextProps.color;

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

17

g
o
Detour: Shallow vs. Deep /' 50&(,\)4, Y W
Comparison® NN X“’@

%‘ W \r‘/\ l >

Shallow Comparison: When each /

property in a pair of objects are Shallow Clone Deep Clon V)W
Object Object Object Object

using ===. \/

Deep C?mparlson: When the Referenced Referenced | | Referenced
properties of two objects are S Shiect Cioe
recursively compared, e.g., using

Lodash isEqual(). <‘1\ er%?&io\-tﬂc§
0

8Image source

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 18

React.PureComponent

React provides a component called PureComponent that
implements shouldComponentUpdate() and only diffs and updates
when it returns true.

Note that any child of PureComponent must be a PureComponent.

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

19

Other Ways of Optimizing Performance

>

Vv

Not mutating objects

>

A\

Using immutable data structures

>

\Y

Using the production build of React

> Many more,...

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

Further Reading on React Performance

>» 21 Performance Optimization for React Apps

> Efficient React Components: A Guide to Optimizing React

Performance

> React]S.org: Optimizing Performance

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

21

T

TOP AAT

TopHat Questions

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

Advanced
Asynchronous
Updating

Getting data within componentDidMount ()

Ideally, we want to interact with the server in the following way.
What would happen here?

componentDidMount() {
const res = fetch('https://example.com')
const something = res.json()
this.setState({something})

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

24

But we end up following up fetch() with a series of then()s.

componentDidMount() {
fetch('https://example.com")
.then((xes) => res.json())
.then((something) => this.setState({something}))
}

then() allows us to program asynchronously (by allowing

componentDidMount () to wait for the Promise to be resolved).
Although, this syntax can be unintuitive and not readable.

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 a,D U V\/ (9-/0/\ .

Programming asynchronously using async/await

/V\Wﬁf\\/

async/await provides syntax toprogram asynchronously in an
intuitive and clean way.

Usage:

> async function() denotes that the function() will work
asynchronously.

> await expression enables the program to wait for expression
to be resolved.

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 26

Example:?

async componentDidMount() {
const res = await fetch('https://example.com')
const something = await res.json()
this.setState({something})

} Oﬁsbbf\ﬁ;

9See in CodePen

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

27

async Functions™

Any function can be asynchronous and use async. Useful where
the function has to wait for another process.

async addTag(name) {
if(this.state.tags.index0f(name) === -1) {
await this.setState({tags: [...this.state.tags, name]});

this.setCourses();

}

1°See example in CodePen (line 70)

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

28

APIs for advanced
Interaction

Interaction Libraries

>» react-beautiful-dnd: Examples

> react-smooth-dnd: Demo

> React DnD: Examples

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

_

Drog
: ?
~.] e

30

Component Libraries

> Material Ul \

> Material Kit React: Demo ZD GLD% &

> Rebass E g\N\D&\

> Grommet A vsed- by Lots o wek “WS
> React Desktop : Demo iS)QQ,L\N’QS \"k’Q’ \Ecoj\‘h\b‘\ﬁ

Qosey AR

© Building User Interfaces | Professor Mutlu | Week 07: React — 4 31

Managing Data

> React Virtualized: Demo

S

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

What did we learn today?

> Optimizing performance in React
> Advanced asynchronous updating

> APIs for advanced interaction

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

33

Assignment Q & A

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

34

Midterm Q & A

© Building User Interfaces | Professor Mutlu | Week 07: React — 4

35

