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What we will learn today<

> Accessible Building

> Storing data using AsyncStorage
> Theming Libraries

> Accessing and Using Sensor Data

> App Lifecycle using AppState

> Assignment Preview
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Accessible Building
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Accessibility in Web
Technologies®

From the three-layered cake to the
Peanut Mé&M:

'Image source
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https://www.interaction-design.org/literature/article/accessibility-usability-for-all

Accessible Rich Internet Applications (ARIA)?

ariais a set of HTML attributes that make web components
avialable to assistive technologies.

<div id="percent-loaded" role="progressbar" aria-valuenow="75"
aria-valuemin="0" aria-valuemax="100">

</div>

2MDN Web Docs: ARIA
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https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA

Accessibility in React Native?

RN provides us with access to assistive technologies that mobile
platforms provide (e.g., VoiceOver on 10S or TalkBack on
Android) through component attributes.

<View accessible={true}>
<Text>List 1tem one</Text>

<Text>List i1tem two</Text>

</View>

3React Native Accessibility
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https://facebook.github.io/react-native/docs/accessibility

React Native Accessibility Properties

accessible attribute indicates whether the component is an
accessibility element and, if so, groups its children in a single
selectable component.

accessibilitylabel attribute defines screen reader descriptions
of components.

accessibilityHint attribute helps users understand what will
happen if they perform the action on the accessibility element.
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React Native Accessibility Actions

Standard, e.g., magicTap, escape, activate, increment, decrement,

longpress, Or custom actions, handled by onAccessibilityAction.

onAccessibilityAction={(event) => {
switch (event.nativeEvent.actionName) {

case 'longpress’':

}
}}
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AsyncStorage
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What is AsyncStorage?

AsyncStorage 1S a simple, unencrypted, persistent, key-value
storage system that is global to the app.

Four key features:

1. Simple: Core functionality involves set and get methods.
2. Unencrypted: Access 1s controlled by location access.
3. Persistent: Data is saved until it is explicitly deleted.

/4. Global: Saved data 1s global to the app.
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How does it worke

We use the AsyncStorage JS library:

import AsyncStorage from '@react-native-community/async-storage’;

Through RN Bridge, the corresponding native code library will
store the data in an appropriate format, in a dictionary or files in
10S and 1n a database in Android.

All AsyncStorage operations are asynchronous and therefore
return a Promise.
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Saving Data

async () => {

storeData

try {
await AsyncStorage.setItem('@storage_Key', 'stored value')

} catch (e) {

// saving errorx
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Retrieving Data

getData = async () => {

try {
const value = await AsyncStorage.getItem('@storage_Key')

if(value !== null) {
// value previously stored

}
} catch(e) {

// error reading value

}
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Other operations*

removeItem(key) removes the item that corresponds to a key.
mergeltem(key) merges an existing key value with an input value.

clear() erases all AsyncStorage.
setAllKeys() retrieves all keys for your app.

multiGet(keys), multiSet(keys,values), multiRemove(keys),

multiMerge(keys,values) are batch operations for array data.

4More information on RN AsyncStorage
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https://github.com/react-native-community/async-storage
https://github.com/react-native-community/async-storage

TopHat Quiz
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Theming in React
Native



Popular Theme Libraries and Toolkits

> NatilveBase

> React Native Elements
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https://nativebase.io/
https://react-native-elements.github.io/react-native-elements/

NativeBase’

For 10S and Android.

Customized using NativeBase
Customizer.

Different themes using
StyleProvider.

<Button light style={{borderRadius:8}}>
<Text>Contact Us</Text>
</Button>

>Image source

®See example in Expo
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https://nativebase.io/customizer/
https://nativebase.io/customizer/
https://snack.expo.io/@bmutlu/native-base-theming-example
https://nativebase.io/nativebase-customizer

Importing themes:

impoxrt getTheme from './native-base-theme/components’;

import material from './native-base-theme/variables/material’;

Applying themes using getTheme():

<StyleProvider style={getTheme(material)}>
<Container>
<Content>
</Content>
</Containexr>

</StyleProvider>
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Sensors

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

22



Sensor Libraries

Two options:

1. React Native sensors library: react-native-sensors

2. EXpo sensors library:expo-sensors
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Expo Sensors Library

Provides access to device sensors through specific components:

Accelerometer: provides access to the accelerometer sensor,
which captures displacement in 3D.

Barometer: provides access the device barometer sensor, which
captures changes in air pressure.

Gyroscope: provides access the device gyroscope sensor, which
captures changes in rotation in 3D space.
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Magnetometer: provides access the device magnetometer sensor,
which measures changes in the magnetic field.
MagnetometerUncalibrated: provides access to uncalibrated raw
values from the magnetometer.

Pedometex: Provides step count from the native sensor libraries.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

25



How to Access Sensor Data

Install the sensor library:

expo install expo-sensoxs

Import the sensor component:

import { Accelerxometer } from 'expo-sensoxs';

Check if the sensor is avialable:

Accelerometer.isAvailableAsync()
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Create listener for sensor events:

Accelerometer.addListener(listener)

Best practice is to create subscribe and unsubscribe functions:

=> {

this._subscription = Accelerometer.addListenex(

_subscribe

this.setState({ accelerometerData });

})s
}s
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To remove listeners for sensor events:

Accelerometer.removeAllListeners()

To subscribe to updates to the sensor data at specified intervals:

Accelerometer.setUpdateIntexrval(intervalMs)
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Access to Other Hardware

Camera USIng expo-camera renders a preview of the front or the
back camera.

Battery using expo-battery provides battery information.

Haptics using expo-haptics provides haptic feedback using the
Taptic Engine on 10S and Vibrator system service on Android.

Audio using expo-av provides basic audio playback and recording.

Brightness using expo-brightness allows getting and setting
screen brightness.
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App Litecycle Using
AppState



The Problem

Everything we have been doing so far assumes that our app is
loaded on the screen and is running as a foreground process.

We need to be able to perform background processes or safely
save the user's data in case the OS suspends it or the user quits
it.
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The Solution

AppState provides information on the current state of the app:

> active indicates that the app is running in the foreground

> background Indicates that the app i1s running in the
background

> inactive Indicates that the app is transitioning between
foreground and background
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impoxrt {AppState} from 'react-native'j

state = { appState: AppState.currentState};

componentDidMount() {
AppState.addEventListener('change', this._handleAppStateChange);

_handleAppStateChange = (nextAppState) => {
if (this.state.appState.match(/inactive|background/) && nextAppState === 'active') ({
// Do something

}
this.setState({appState: nextAppState});

}s
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Example Background Process

BackgroundFetch from expo-background-fetch allows performing
background fetch tasks using the TaskManager Native API.

BackgroundFetch.registexrTaskAsync(taskName, options)
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Assignment Preview
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React Native 3 Requirements

> Be able to add a meal to a day
>> Be able to add foods to meals

> Summarize (aggregate) stats for meals based on foods

> Hook up stats in day view for nutritional data (aggregated over

meals/foods from that day)
> Allow users to track their stats over a the past 7 days

>> Clean/Clear/Attractive interface
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Some Notes

1. Using endpoint for foods (not limited to these):

https://mysqlcs639.cs.wisc.edu/foods/

1. pluralize package to properly format food items:

pluralize('test', 1, true)

pluralize('test', 5, true)
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https://github.com/blakeembrey/pluralize
https://github.com/blakeembrey/pluralize

What did we learn todays?

> Accessible Building

> Storing data using AsyncStorage
> Theming Libraries

> Accessing and Using Sensor Data

> App Lifecycle using AppState

> Assignment Preview
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