Building User Intertaces

React Native 3

Advanced Concepts

Protessor Bilge Mutlu

What we will learn today<

> Accessible Building

> Storing data using AsyncStorage
> Theming Libraries

> Accessing and Using Sensor Data

> App Lifecycle using AppState

> Assignment Preview

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

LB

TopHat Attendance

H
TOP HAT

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

LB

TopHat Questions

H
TOP HAT

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

Accessible Building

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

Accessibility in Web
Technologies®

From the three-layered cake to the
Peanut Mé&M:

'Image source

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

| L
\g’

[S———
MIWTIM0 83

UL

By Dennis Lembree based on illustration by Dave Stewart

Content
(semantic HTML)

Presentation (CSS)
Behavior (JavaScript)

ARIA (packages for
accessibility)

https://www.interaction-design.org/literature/article/accessibility-usability-for-all

Accessible Rich Internet Applications (ARIA)?

ariais a set of HTML attributes that make web components
avialable to assistive technologies.

<div id="percent-loaded" role="progressbar" aria-valuenow="75"
aria-valuemin="0" aria-valuemax="100">

</div>

2MDN Web Docs: ARIA

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA

Accessibility in React Native?

RN provides us with access to assistive technologies that mobile
platforms provide (e.g., VoiceOver on 10S or TalkBack on
Android) through component attributes.

<View accessible={true}>
<Text>List 1tem one</Text>

<Text>List i1tem two</Text>

</View>

3React Native Accessibility

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

https://facebook.github.io/react-native/docs/accessibility

React Native Accessibility Properties

accessible attribute indicates whether the component is an
accessibility element and, if so, groups its children in a single
selectable component.

accessibilitylabel attribute defines screen reader descriptions
of components.

accessibilityHint attribute helps users understand what will
happen if they perform the action on the accessibility element.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

React Native Accessibility Actions

Standard, e.g., magicTap, escape, activate, increment, decrement,

longpress, Or custom actions, handled by onAccessibilityAction.

onAccessibilityAction={(event) => {
switch (event.nativeEvent.actionName) {

case 'longpress’':

}
}}

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 10

AsyncStorage

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

11

What is AsyncStorage?

AsyncStorage 1S a simple, unencrypted, persistent, key-value
storage system that is global to the app.

Four key features:

1. Simple: Core functionality involves set and get methods.
2. Unencrypted: Access 1s controlled by location access.
3. Persistent: Data is saved until it is explicitly deleted.

/4. Global: Saved data 1s global to the app.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

12

How does it worke

We use the AsyncStorage JS library:

import AsyncStorage from '@react-native-community/async-storage’;

Through RN Bridge, the corresponding native code library will
store the data in an appropriate format, in a dictionary or files in
10S and 1n a database in Android.

All AsyncStorage operations are asynchronous and therefore
return a Promise.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 13

Saving Data

async () => {

storeData

try {
await AsyncStorage.setItem('@storage_Key', 'stored value')

} catch (e) {

// saving errorx

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 14

Retrieving Data

getData = async () => {

try {
const value = await AsyncStorage.getItem('@storage_Key')

if(value !== null) {
// value previously stored

}
} catch(e) {

// error reading value

}

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

15

Other operations*

removeItem(key) removes the item that corresponds to a key.
mergeltem(key) merges an existing key value with an input value.

clear() erases all AsyncStorage.
setAllKeys() retrieves all keys for your app.

multiGet(keys), multiSet(keys,values), multiRemove(keys),

multiMerge(keys,values) are batch operations for array data.

4More information on RN AsyncStorage

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 16

https://github.com/react-native-community/async-storage
https://github.com/react-native-community/async-storage

TopHat Quiz

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

TOP HAT

17

Theming in React
Native

Popular Theme Libraries and Toolkits

> NatilveBase

> React Native Elements

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

https://nativebase.io/
https://react-native-elements.github.io/react-native-elements/

NativeBase’

For 10S and Android.

Customized using NativeBase
Customizer.

Different themes using
StyleProvider.

<Button light style={{borderRadius:8}}>
<Text>Contact Us</Text>
</Button>

>Image source

®See example in Expo

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

Button

FontFamily

FontSize

Line Height

Ilcon & Text Color -

Inverse Text Color

Base Border
EGIIVES

Primary
Background

Info Background

Success
Background

20

https://nativebase.io/customizer/
https://nativebase.io/customizer/
https://snack.expo.io/@bmutlu/native-base-theming-example
https://nativebase.io/nativebase-customizer

Importing themes:

impoxrt getTheme from './native-base-theme/components’;

import material from './native-base-theme/variables/material’;

Applying themes using getTheme():

<StyleProvider style={getTheme(material)}>
<Container>
<Content>
</Content>
</Containexr>

</StyleProvider>

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

21

Sensors

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

22

Sensor Libraries

Two options:

1. React Native sensors library: react-native-sensors

2. EXpo sensors library:expo-sensors

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

23

Expo Sensors Library

Provides access to device sensors through specific components:

Accelerometer: provides access to the accelerometer sensor,
which captures displacement in 3D.

Barometer: provides access the device barometer sensor, which
captures changes in air pressure.

Gyroscope: provides access the device gyroscope sensor, which
captures changes in rotation in 3D space.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 24

Magnetometer: provides access the device magnetometer sensor,
which measures changes in the magnetic field.
MagnetometerUncalibrated: provides access to uncalibrated raw
values from the magnetometer.

Pedometex: Provides step count from the native sensor libraries.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

25

How to Access Sensor Data

Install the sensor library:

expo install expo-sensoxs

Import the sensor component:

import { Accelerxometer } from 'expo-sensoxs';

Check if the sensor is avialable:

Accelerometer.isAvailableAsync()

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

26

Create listener for sensor events:

Accelerometer.addListener(listener)

Best practice is to create subscribe and unsubscribe functions:

=> {

this._subscription = Accelerometer.addListenex(

_subscribe

this.setState({ accelerometerData });

})s
}s

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

=> {

27

To remove listeners for sensor events:

Accelerometer.removeAllListeners()

To subscribe to updates to the sensor data at specified intervals:

Accelerometer.setUpdateIntexrval(intervalMs)

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

28

Access to Other Hardware

Camera USIng expo-camera renders a preview of the front or the
back camera.

Battery using expo-battery provides battery information.

Haptics using expo-haptics provides haptic feedback using the
Taptic Engine on 10S and Vibrator system service on Android.

Audio using expo-av provides basic audio playback and recording.

Brightness using expo-brightness allows getting and setting
screen brightness.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 29

App Litecycle Using
AppState

The Problem

Everything we have been doing so far assumes that our app is
loaded on the screen and is running as a foreground process.

We need to be able to perform background processes or safely
save the user's data in case the OS suspends it or the user quits
it.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 31

The Solution

AppState provides information on the current state of the app:

> active indicates that the app is running in the foreground

> background Indicates that the app i1s running in the
background

> inactive Indicates that the app is transitioning between
foreground and background

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 32

impoxrt {AppState} from 'react-native'j

state = { appState: AppState.currentState};

componentDidMount() {
AppState.addEventListener('change', this._handleAppStateChange);

_handleAppStateChange = (nextAppState) => {
if (this.state.appState.match(/inactive|background/) && nextAppState === 'active') ({
// Do something

}
this.setState({appState: nextAppState});

}s

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 33

Example Background Process

BackgroundFetch from expo-background-fetch allows performing
background fetch tasks using the TaskManager Native API.

BackgroundFetch.registexrTaskAsync(taskName, options)

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

34

Assignment Preview

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

35

React Native 3 Requirements

> Be able to add a meal to a day
>> Be able to add foods to meals

> Summarize (aggregate) stats for meals based on foods

> Hook up stats in day view for nutritional data (aggregated over

meals/foods from that day)
> Allow users to track their stats over a the past 7 days

>> Clean/Clear/Attractive interface

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

36

Some Notes

1. Using endpoint for foods (not limited to these):

https://mysqlcs639.cs.wisc.edu/foods/

1. pluralize package to properly format food items:

pluralize('test', 1, true)

pluralize('test', 5, true)

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3

37

https://github.com/blakeembrey/pluralize
https://github.com/blakeembrey/pluralize

What did we learn todays?

> Accessible Building

> Storing data using AsyncStorage
> Theming Libraries

> Accessing and Using Sensor Data

> App Lifecycle using AppState

> Assignment Preview

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 38

