
Building User Interfaces

React Native 3
Advanced Concepts

Professor Bilge Mutlu

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 1

What we will learn today?
» Accessible Building

» Storing data using AsyncStorage

» Theming Libraries

» Accessing and Using Sensor Data

» App Lifecycle using AppState

» Assignment Preview

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 2

TopHat Attendance

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 3

TopHat Questions

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 4

Accessible Building

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 5

Accessibility in Web
Technologies1

From the three-layered cake to the
Peanut M&M:

1 Image source

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 6

https://www.interaction-design.org/literature/article/accessibility-usability-for-all

Accessible Rich Internet Applications (ARIA)2

aria is a set of HTML attributes that make web components
avialable to assistive technologies.

<div id="percent-loaded" role="progressbar" aria-valuenow="75"
 aria-valuemin="0" aria-valuemax="100">
</div>

2 MDN Web Docs: ARIA

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 7

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA

Accessibility in React Native3

RN provides us with access to assistive technologies that mobile
platforms provide (e.g., VoiceOver on iOS or TalkBack on
Android) through component attributes.

<View accessible={true}>
 <Text>List item one</Text>
 <Text>List item two</Text>
</View>

3 React Native Accessibility

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 8

https://facebook.github.io/react-native/docs/accessibility

React Native Accessibility Properties

accessible attribute indicates whether the component is an
accessibility element and, if so, groups its children in a single
selectable component.

accessibilityLabel attribute defines screen reader descriptions
of components.

accessibilityHint attribute helps users understand what will
happen if they perform the action on the accessibility element.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 9

React Native Accessibility Actions

Standard, e.g., magicTap, escape, activate, increment, decrement,
longpress, or custom actions, handled by onAccessibilityAction.

onAccessibilityAction={(event) => {
 switch (event.nativeEvent.actionName) {
 case 'longpress':
 // take action
 ...
 }
 }}

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 10

AsyncStorage

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 11

What is AsyncStorage?

AsyncStorage is a simple, unencrypted, persistent, key-value
storage system that is global to the app.

Four key features:

1. Simple: Core functionality involves set and get methods.

2. Unencrypted: Access is controlled by location access.

3. Persistent: Data is saved until it is explicitly deleted.

4. Global: Saved data is global to the app.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 12

How does it work?

We use the AsyncStorage JS library:

import AsyncStorage from '@react-native-community/async-storage';

Through RN Bridge, the corresponding native code library will
store the data in an appropriate format, in a dictionary or files in
iOS and in a database in Android.

All AsyncStorage operations are asynchronous and therefore
return a Promise.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 13

Saving Data

storeData = async () => {
 try {
 await AsyncStorage.setItem('@storage_Key', 'stored value')
 } catch (e) {
 // saving error
 }
}

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 14

Retrieving Data

getData = async () => {
 try {
 const value = await AsyncStorage.getItem('@storage_Key')
 if(value !== null) {
 // value previously stored
 }
 } catch(e) {
 // error reading value
 }
}

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 15

Other operations4

removeItem(key) removes the item that corresponds to a key.
mergeItem(key) merges an existing key value with an input value.

clear() erases all AsyncStorage.

getAllKeys() retrieves all keys for your app.

multiGet(keys), multiSet(keys,values), multiRemove(keys),
multiMerge(keys,values) are batch operations for array data.

4 More information on RN AsyncStorage

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 16

https://github.com/react-native-community/async-storage
https://github.com/react-native-community/async-storage

TopHat Quiz

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 17

Theming in React
Native

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 18

Popular Theme Libraries and Toolkits

» NativeBase

» React Native Elements

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 19

https://nativebase.io/
https://react-native-elements.github.io/react-native-elements/

NativeBase5 6

For iOS and Android.

Customized using NativeBase
Customizer.

Different themes using
StyleProvider.

<Button light style={{borderRadius:8}}>
 <Text>Contact Us</Text>
</Button>

6 See example in Expo

5 Image source

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 20

https://nativebase.io/customizer/
https://nativebase.io/customizer/
https://snack.expo.io/@bmutlu/native-base-theming-example
https://nativebase.io/nativebase-customizer

Importing themes:

import getTheme from './native-base-theme/components';
import material from './native-base-theme/variables/material';

Applying themes using getTheme():

<StyleProvider style={getTheme(material)}>
 <Container>
 <Content>
 ...
 </Content>
 </Container>
</StyleProvider>

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 21

Sensors

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 22

Sensor Libraries

Two options:

1. React Native sensors library: react-native-sensors

2. Expo sensors library:expo-sensors

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 23

Expo Sensors Library

Provides access to device sensors through specific components:

Accelerometer: provides access to the accelerometer sensor,
which captures displacement in 3D.

Barometer: provides access the device barometer sensor, which
captures changes in air pressure.
Gyroscope: provides access the device gyroscope sensor, which
captures changes in rotation in 3D space.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 24

Magnetometer: provides access the device magnetometer sensor,
which measures changes in the magnetic field.
MagnetometerUncalibrated: provides access to uncalibrated raw
values from the magnetometer.

Pedometer: Provides step count from the native sensor libraries.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 25

How to Access Sensor Data

Install the sensor library:

expo install expo-sensors

Import the sensor component:

import { Accelerometer } from 'expo-sensors';

Check if the sensor is avialable:

Accelerometer.isAvailableAsync() // returns true or false

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 26

Create listener for sensor events:

Accelerometer.addListener(listener)

Best practice is to create subscribe and unsubscribe functions:

_subscribe = () => {
 this._subscription = Accelerometer.addListener(accelerometerData => {
 this.setState({ accelerometerData });
 });
};

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 27

To remove listeners for sensor events:

Accelerometer.removeAllListeners()

To subscribe to updates to the sensor data at specified intervals:

Accelerometer.setUpdateInterval(intervalMs)

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 28

Access to Other Hardware

Camera using expo-camera renders a preview of the front or the
back camera.

Battery using expo-battery provides battery information.

Haptics using expo-haptics provides haptic feedback using the
Taptic Engine on iOS and Vibrator system service on Android.

Audio using expo-av provides basic audio playback and recording.

Brightness using expo-brightness allows getting and setting
screen brightness.
© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 29

App Lifecycle Using
AppState

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 30

The Problem

Everything we have been doing so far assumes that our app is
loaded on the screen and is running as a foreground process.

We need to be able to perform background processes or safely
save the user's data in case the OS suspends it or the user quits
it.

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 31

The Solution

AppState provides information on the current state of the app:

» active indicates that the app is running in the foreground

» background indicates that the app is running in the
background

» inactive indicates that the app is transitioning between
foreground and background

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 32

import {AppState} from 'react-native';

state = { appState: AppState.currentState};

componentDidMount() {
 AppState.addEventListener('change', this._handleAppStateChange);
}

_handleAppStateChange = (nextAppState) => {
 if (this.state.appState.match(/inactive|background/) && nextAppState === 'active') {
 // Do something
 }
 this.setState({appState: nextAppState});
};

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 33

Example Background Process

BackgroundFetch from expo-background-fetch allows performing
background fetch tasks using the TaskManager Native API.

BackgroundFetch.registerTaskAsync(taskName, options)

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 34

Assignment Preview

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 35

React Native 3 Requirements

» Be able to add a meal to a day

» Be able to add foods to meals

» Summarize (aggregate) stats for meals based on foods

» Hook up stats in day view for nutritional data (aggregated over
meals/foods from that day)

» Allow users to track their stats over a the past 7 days

» Clean/Clear/Attractive interface

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 36

Some Notes

1. Using endpoint for foods (not limited to these):

https://mysqlcs639.cs.wisc.edu/foods/

1. pluralize package to properly format food items:

pluralize('test', 1, true) //=> "1 test"
pluralize('test', 5, true) //=> "5 tests"

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 37

https://github.com/blakeembrey/pluralize
https://github.com/blakeembrey/pluralize

What did we learn today?
» Accessible Building

» Storing data using AsyncStorage

» Theming Libraries

» Accessing and Using Sensor Data

» App Lifecycle using AppState

» Assignment Preview

© Building User Interfaces | Professor Mutlu | Week 11: React Native — 3 38

