
Building User Interfaces

Javascript
An Introduction
Professor Bilge Mutlu
© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 1

Disclaimer

This is not a comprehensive introduction to JS, so below are links to
great additional resources:

— MDN Web Docs

— DevDocs

— W3 Schools

— FreeCodeCamp

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 2

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://devdocs.io/javascript/
https://www.w3schools.com/js/default.asp
https://guide.freecodecamp.org/javascript/

What we will learn today?

— History and overview of web programming

— Syntax, JS for Java developers

— Interacting with user-facing elements

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 3

Live Q&A Reminder

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 4

What we will you need?

— A modern web browser (developer tools enabled)

— A source-code editor (e.g., Visual Studio Code, Atom, Sublime
Text)

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 5

A little bit of history

— JavaScript (JS) was developed by Netscape Communications
(Brendan Eich) in 1995 to make the web more dynamic — a "glue
language" for HTML — Marc Andreessen

— Mocha > LiveScript > JavaScript/VBScript > JScript (Microso!)

— Client-side and server-side JS (e.g., Node.js)

— Standardization through ECMAScript (ES)1

1 The three layers of designing for the web

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 6

https://www.lifewire.com/three-layers-of-web-design-3468761

How does the "front-end" of
the web work?

A three-layered cake:1

1. HTML: Base cake layer

2. CSS: Icing

3. JS: Clown hidden in the cake

1 The three layers of designing for the web

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 7

https://www.lifewire.com/three-layers-of-web-design-3468761

Let's see an example

Consider the following very simple HTML page:

<!DOCTYPE html>

<html>

<head>

</head>

<body>

<h1>My Web Page</h1>

<p>Welcome to my webpage! You can see my resume below.</p>

<button>Download Resume</button>

</body>

</html>

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 8

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 9

Let's improve its appearance. Within head and then style:

body {background-color: lightgrey;}
h1 {
 color: darkslategray;
 text-align: center;
 font-family: 'Gill Sans', 'Gill Sans MT', Calibri, 'Trebuchet MS', sans-serif}
p {
 color: darkolivegreen;
 margin-left: 50px;
 margin-right: 50px;
 font-family: 'Gill Sans', 'Gill Sans MT', Calibri, 'Trebuchet MS', sans-serif}
button {
 background-color: darkolivegreen;
 border: none;
 color: white;
 padding: 15px 32px;
 text-align: center;
 display: inline-block;
 font-size: 16px;
 margin-left: 50px; margin-right: 50px;
 font-family: 'Gill Sans', 'Gill Sans MT', Calibri, 'Trebuchet MS', sans-serif}

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 10

Detour: Specifying Color2

— RGB triplet, HEX triplet

— Majors > tone; minors > shade

— Values 0–9–A–F (16 values)

— Search for "hex color"

2 Nitish Khagwal

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 11

https://medium.muz.li/hex-color-codes-27cd0a37c3ce

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 12

Let's add some minor interactivity. Within head and then script:

function myFunction() {

 document.getElementById("message").innerHTML = "Downloading...";

}

Then within body:

<button onclick="myFunction()">Download Resume</button>

<p id="message"></p>

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 13

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 14

Quiz 1

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 15

https://canvas.wisc.edu/courses/219500/quizzes/207641

How does JS interact with the page?

1. Internal JS

2. External JS

3. Inline JS handler

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 16

Internal JS

Internal JS is included within the HTML inside <script> tags.

<head>
 <script>
 // JS goes here
 </script>
</head>

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 17

External JS

Create a script.js file, which will contain your JS code, and include
the filed within head:

<script src="script.js" defer></script>

Here, defer indicates that script.js should be executed a!er the page
is parsed.

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 18

Inline JS handlers

<button onclick="myFunction()">Download Resume</button>

Pro Tip 1: In general, inline JS handlers result in inefficient and
unorganized code.

Pro Tip 2: Different loading strategies are used for internal JS
(listening for DOMContentLoaded event; including script a"er the page
content) and external JS (defer and async attributes).

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 19

How is JS interpreted?

— All modern browsers have a JS engine, e.g., v8, SpiderMonkey3

— Node.js encompasses v8 within a C++-based environment to
compile JS outside the browser4

— In this class, we will exclusively work within the browser
environment

4 Node.js

3 List of ECMAScript engines

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 20

https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/List_of_ECMAScript_engines

How do I start JS development?

1. In the browser — best for testing ideas, code, etc.

2. In a coding environment — best for application development

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 21

Running JS in the browser

Ctrl-Shift-K or Command-Option-K

Try out:

console.log("On Wisconsin!")

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 22

Running JS in an online
sandbox

— https://codepen.io/

— https://codesandbox.io/

— https://glitch.com/

— https://playcode.io/

— https://jsfiddle.net/

— https://jsbin.com/

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 23

https://codepen.io/
https://codesandbox.io/
https://glitch.com/
https://playcode.io/
https://jsfiddle.net/
https://jsbin.com/

Running JS in a coding
environment

If you are using VS Code install Live
Server, start a simple HTML file, and try
adding:

<script>alert("On Wisconsin");</script>

http://127.0.0.1:5500/index.html

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 24

http://127.0.0.1:5500/index.html

What is this "TypeScript" I hear about?

Definition: TypeScript is a strict syntactical superset of JS developed
to enable the development of large-scale applications and to add
static typing (ensuring type safety).

Alternatives: CoffeeScript, LiveScript, Babel

Preprocessors compile code written in TS, CS, LS, and Babel into JS
that can be executed by a JS engine.

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 25

TypeScript code:

var peerMentors: string[] = ['Sanjana', 'Vera'];
var firstPeerMentor: string = array[0];

Compiles into JS code:

var peerMentors = ['Sanjana', 'Vera'];
var firstPeerMentor = array[0];

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 26

Syntax, JS for Java Developers

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 27

Variables

Definition: Variables are containers that hold reusable data.

— ES6 defines seven standard data types: numbers, string, boolean,
null, undefined, symbol, object

— JS is a dynamically, or loosely, typed language, and data type is
inferred from the declaration and can be changed over time —
Let's try!

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 28

Consider the following three variable containers:

var userName = "Jack";
let userName = "Jill";
const interestRate = 4.25;

— var and let work identically but have different scopes

— var declares a variable that is globally accessible

— let declares a variable that is only accessible within the current
block, e.g., a for loop

— const declares a variable that is unchangeable — Let's try!

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 29

— JS has a flexible and powerful declaration syntax, for example:

var firstName = "Cole", lastName = "Nelson", age = 26;
var firstName = "Cole",
lastName = "Nelson",
age = 26;
var fullName = firstName + " " + lastName;

— Because JS is dynamically typed, you can query the data type:

typeof firstName;
"string"

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 30

Quiz 2

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 31

https://canvas.wisc.edu/courses/219500/quizzes/207643

Objects

Definition: Objects are unordered collections of related data of
primitive or reference types — defined using key: value statements.

var teachingAssistant = {
 firstName: "John",
 lastName: "Balis",
 age: 24
}

teachingAssistant;
> {firstName: "John", lastName: "Balis", age: 24}

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 32

Object Properties

Different notations to access object properties:

teachingAssistant.lastName;
> "Balis"

teachingAssistant["lastName"];
> "Balis"

let userFocus = "lastName";
teachingAssistant[userFocus];
> "Balis"

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 33

Arrays

Definition: An array is a variable that contains multiple elements.

— Like variables, arrays are also dynamically typed.

— JS arrays can contain elements of different types.

var myGradStudents = ["Andy", "David", "Laura"];
myGradStudents[3] = "Nathan";
myGradStudents;
> ["Andy", "David", "Laura", "Nathan"]

myGradStudents[4] = 4;
myGradStudents;
> ["Andy", "David", "Laura", "Nathan", 4]

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 34

Functions5

Definition: A procedure that includes a set of statements that
performs a task or calculates a value. The function must be defined
and called within the same scope.

Functions can be used to perform specific tasks.

function fahrenheitToCelcius(temperature) {
 return (temperature - 32) * 5/9;
}

fahrenheitToCelcius(77);
> 25

5 Functions

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 35

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions

Functions can also serve as methods associated with objects.

var latestWeatherReport = {
 temperature: 77,
 humidity: 64,
 wind: 6,
 celcius: function() {
 return (this.temperature - 32) * 5/9;
 }
}

latestWeatherReport.temperature;
> 77

latestWeatherReport.celcius();
> 25
© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 36

Anonymous functions

Definition: Anonymous functions are declared without named
identifiers that refer to them.

Form 1:

var firstItem = function (array) {return array[0]};

Form 2 ("arrow" functions6):

const firstItem = array => return array[0];

6 Zen Dev

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 37

https://zendev.com/2018/10/01/javascript-arrow-functions-how-why-when.html

Declared vs. Anonymous7

Advantages of declared and anonymous functions are:

Named Anonymous

Debugging Scope

Recursion Brevity

7 Scott Logic

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 38

https://blog.scottlogic.com/2011/06/10/javascript-anonymous-functions.html

Conditionals

Definition: Conditionals allow the code to make decisions and carry
out different actions depending on different inputs.

Three types:
1. if...else statements
2. switch statements
3. Ternary operator

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 39

Comparison and logical operators

— === and !== (identical to/not identical objects)

— == and != (identical to/not identical values)

— < and > (less/greater than)

— <= and => (less/greater than or equal to)

— && (AND)

— || (OR)

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 40

Example object comparison:

var ta1 = { name: "Derek" };
var ta2 = { name: "Cole" };
console.log(ta1 === ta2);
> false

Example value comparison:

var ta1 = { name: "John" };
var ta2 = { name: "John" };
console.log(ta1.name == ta2.name);
> true

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 41

Pro Tip: In JS, any value that is not false, undefined, null, 0, NaN, or ""
returns true.

var currentMember = false;

if (currentMember) {
 para.textContent = 'Sign In';
} else {
 para.textContent = 'Sign Up';
}
> Sign up

We don't need to explicitly specify === true.

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 42

if...else statements8

<select id="sign">
 <option value="">--Make a choice--</option>
 <option value="illinois">Illinois</option>
 <option value="indiana">Indiana</option>
...

var select = document.querySelector('select');
var para = document.querySelector('p');

select.addEventListener('change', setSign);

function setSign() {
 var choice = select.value;
 var messageText = 'Current mortgage loan rate is ';
// Data from https://www.astrology.com/horoscope/daily.html
 if (choice === 'illinois') {
 para.textContent = messageText + 4.50 + '%';
 } else if (choice === 'indiana') {
 para.textContent = messageText + 3.50 + '%';
...

8 See in JSFiddle

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 43

https://jsfiddle.net/professormutlu/mb08s1q4/24/

var select = document.querySelector('select');
var para = document.querySelector('p');

select.addEventListener('change', setSign);

function setSign() {
 var choice = select.value;
 var messageText = 'Current mortgage loan rate is ';
 if (choice === 'illinois') {
 para.textContent = messageText + 4.50 + '%';
 } else if (choice === 'indiana') {
 para.textContent = messageText + 3.50 + '%';
...

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 44

Ternary operator

Definition: An operator that tests a condition and returns one
output if true and another if it is false.

Prototype:

(condition) ? doSomething : doSomethingElse;

Example:

(currentMember) ? para.textContent = 'Sign In' : para.textContent = 'Sign Up';

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 45

Looping

Definition: Executing one or more statements repeatedly until
certain conditions are met. To express a loop, we need a counter, an
exit condition, and an iterator.

A for loop:

for (initializer; exit-condition; final-expression) {
 // statement
}

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 46

while and do...while loops:

initializer
while (exit-condition) {
 // statement
 final-expression
}

initializer
do {
 // statement
 final-expression
} while (exit-condition)

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 47

Exiting loops, skipping iterations

for (initializer; exit-condition; final-expression) {
 // statement
 if (special-condition-exit) { break; }
 if (special-condition-skip) { continue; }
 // statement
}

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 48

9

9 Baeldung

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 49

https://www.baeldung.com/java-continue-and-break

Quiz 3

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 50

https://canvas.wisc.edu/courses/219500/quizzes/207644

Interacting with User-
facing Elements

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 51

Document Object Model10

Definition: Document Object Model
(DOM) translates an HTML or XML
document into a tree structure where
each node represents an object on the
page.

This is great news for us, because JS can
interact with this structure.

10 Wikipedia: DOM

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 52

https://en.wikipedia.org/wiki/Document_Object_Model

DOM Programming Interface

— Objects: HTML elements, such as a paragraph of text.

— Property: Value that we can get or set, such as the id of an
element.

— Method: An action we can take, such as adding or deleting an
HTML element.

For JS to interact with user-facing elements, we first need to access
them...

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 53

Accessing HTML elements

Most common way of accessing content is getElementById().

<p id="userName"></p>

<script>

 document.getElementById("userName").innerHTML = "Cole Nelson";

</script>

We can also find elements using tag name, class name, CSS selectors,
and HTML object collections.

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 54

Manipulating HTML elements

Changing content:

document.getElementById("userName").innerHTML = "cnelson";

Changing attributes:

document.getElementById("userImage").src = "Headshot.png";

document.getElementById("userName").style.color = "red";

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 55

DOM Events

Now things are heating up!
!

DOM provides access to HTML events: onclick, onload, onunload,
onchange, onmouseover, onmouseout, onmousedown, onmouseup, formaction.

Three ways of registering functions to events:

1. Inline event handlers

2. DOM on-event handlers

3. Using event listeners

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 56

Inline Event Handlers

Prototype:

<button id="id-name" onclick="function();">Button name</button>

Example:

<p id="currentTemp">77</p>

<button id="convertButton" onclick="convertTemp();">Convert to Celcius</button>

<script>

 function convertTemp() {

 document.getElementById("currentTemp").innerHTML

 = (document.getElementById("currentTemp").innerHTML - 32) * 5/9; }

</script>

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 57

DOM on-event Handlers

Prototype:

<script>
 document.getElementById("button").onclick = doSomething();
</script>

Example:

<p id="currentTemp">77</p>

<button id="convertButton">Convert to Celcius</button>

<script>

 document.getElementById("convertButton").onclick = convertTemp;

 function convertTemp() {

 document.getElementById("currentTemp").innerHTML = (document.getElementById("currentTemp").innerHTML - 32) * 5/9; }

</script>

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 58

Using Event Listeners

Prototype:

document.getElementById("button").addEventListener("click", function(){ doSomething() });

Example:

<p id="currentTemp">77</p>

<button id="convertButton">Convert to Celcius</button>

<script>

 document.getElementById("convertButton").addEventListener("click", function(){ convertTemp() });

 function convertTemp() {

 document.getElementById("currentTemp").innerHTML

 = (document.getElementById("currentTemp").innerHTML - 32) * 5/9;

 }

</script>

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 59

Pro Tip: When we add event listeners, we are assigning a function to
a handler for the handler to execute the function when needed, not
calling the function right there.

Do not:

document.getElementById("button").addEventListener("click", doSomething());

Do:

document.getElementById("button").addEventListener("click", function(){ doSomething() });

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 60

Pro Tip: Listeners are the most efficient way to manage events.1112

<button>A</button>

<button>B</button>

<button>C</button>

<script>

 document.body.addEventListener("click", event => {

 if (event.target.nodeName == "BUTTON") {

 console.log("Clicked", event.target.textContent);

 }

 });

</script>

12 See in CodePen

11 Eloquent JavaScript

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 61

https://codepen.io/bmutlu/pen/gOYKpJZ?editors=1011
https://eloquentjavascript.net/15_event.html

Quiz 4

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 62

https://canvas.wisc.edu/courses/219500/quizzes/207645

What did we learn today?

— History and overview of web programming

— Syntax, JS for Java developers

— Interacting with user-facing elements

© Building User Interfaces | Professor Mutlu | Lecture 02 — Javascript 1: An Introduction 63

