
Building User Interfaces

React 4
Advanced Concepts
Professor Bilge Mutlu
© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 1

What we will learn today?

— Optimizing performance in React

— Advanced asynchronous updating

— APIs for advanced interaction

— Assignment Preview

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 2

Optimizing Performance in
React

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 3

Why do we need to worry about
performance?1

As the complexity of your application scales,
performance will necessarily degrade.

Why? And what do we do about it?

1 Image Source: Noam Elboim

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 4

https://medium.com/myheritage-engineering/how-to-greatly-improve-your-react-app-performance-e70f7cbbb5f6

2

2 Image Source: William Wang

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 5

https://www.toptal.com/react/optimizing-react-performance

2

2 Image Source: William Wang

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 6

https://www.toptal.com/react/optimizing-react-performance

2

2 Image Source: William Wang

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 7

https://www.toptal.com/react/optimizing-react-performance

Why does React do that?

That's how React works!

We discussed in React 1 that the diffing within Virtual DOM—reconciliation—is
what makes it fast, but when things are scaled up, continuous diffing and
updating affects performance.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 8

How do we know that?

Performance tools: React provides a powerful library, react-addons-perf,3 for
taking performance measurements.

import Perf from 'react-addons-perf';

Perf.start()

// Our app

Perf.stop()

3 ReactJS.org: Performance tools

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 9

https://reactjs.org/docs/perf.html#printwasted

Useful Perf methods

— Perf.printInclusive() prints overall time taken.

— Perf.printExclusive() prints time minus mounting.

— Perf.printWasted() prints time wasted on components that didn't actually
render anything.

— Perf.printOperations() prints all DOM manipulations.

— Perf.getLastMeasurements() prints the measurement from the last Perf
session.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 10

Perf.printInclusive() and Perf.printWasted() output:4

4 Image Source: Daniel Park

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 11

https://medium.com/@dpark/using-reacts-perf-with-react-addons-perf-77ed260f2df0

We can also visualize the performance of all components:5 6

6 Image source

5 An advanced guide to profiling performance using Chrome Devtools

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 12

https://reactjs.org/docs/optimizing-performance.html
https://calibreapp.com/blog/react-performance-profiling-optimization/

How to eliminate time wasted?

By avoiding reconciliation, i.e., only rendering when there is actually an
update, using shouldComponentUpdate().

Definition: For components that implement shouldComponentUpdate(), React will
only render if it returns true.

function shouldComponentUpdate(nextProps, nextState) {
 return true;
}

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 13

7

7 Image source

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 14

https://reactjs.org/docs/optimizing-performance.html

An example of shallow comparison to determine whether the component
should update:

shouldComponentUpdate(nextProps, nextState) {
 return this.props.color !== nextProps.color;
}

Let's see an example from ReactJS.org...

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 15

https://reactjs.org/docs/optimizing-performance.html

class CounterButton extends React.Component {
 constructor(props) {
 super(props);
 this.state = {count: 1};
 }

 shouldComponentUpdate(nextProps, nextState) {
 if (this.props.color !== nextProps.color) {
 return true;
 }
 if (this.state.count !== nextState.count) {
 return true;
 }
 return false;
 }

 render() {
 return (
 <button
 color={this.props.color}
 onClick={() => this.setState(state => ({count: state.count + 1}))}>
 Count: {this.state.count}
 </button>
);
 }
}

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 16

Detour: Shallow vs. Deep
Comparison8

Shallow Comparison: When each property
in a pair of objects are compared using strict
equality, e.g., using ===.

Deep Comparison: When the properties of
two objects are recursively compared, e.g.,
using Lodash isEqual().

8 Image source

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 17

https://lodash.com
https://miro.medium.com/max/390/0*RGt-o4ovYiIt_9nS

React.PureComponent

React provides a component called PureComponent that implements
shouldComponentUpdate() and only diffs and updates when it returns true.

Note that any child of PureComponent must be a PureComponent.

Let's see an example from ReactJS.org...

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 18

https://reactjs.org/docs/optimizing-performance.html

class CounterButton extends React.PureComponent {
 constructor(props) {
 super(props);
 this.state = {count: 1};
 }

 render() {
 return (
 <button
 color={this.props.color}
 onClick={() => this.setState(state => ({count: state.count + 1}))}>
 Count: {this.state.count}
 </button>
);
 }
}

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 19

Other Ways of Optimizing Performance

— Not mutating objects (see The Power of Not Mutating Data, Immer,
immutability-helper)

— Using immutable data structures (see more on data immutability)

— Using the production build of React

— Many more...

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 20

https://reactjs.org/docs/optimizing-performance.html
https://github.com/immerjs/immer
https://github.com/kolodny/immutability-helper
https://redux.js.org/faq/immutable-data

Further Reading on React Performance

— 21 Performance Optimizations for React Apps

— Efficient React Components: A Guide to Optimizing React Performance

— ReactJS.org: Optimizing Performance

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 21

https://www.codementor.io/blog/react-optimization-5wiwjnf9hj
https://www.toptal.com/react/optimizing-react-performance
https://reactjs.org/docs/optimizing-performance.html

Quiz 1

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 22

https://canvas.wisc.edu/courses/219500/quizzes/213579

Quiz 2

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 23

https://canvas.wisc.edu/courses/219500/quizzes/213590

Advanced Asynchronous
Updating

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 24

Getting data within componentDidMount()

Ideally, we want to interact with the server in the following way. What would
happen here?

componentDidMount() {
 const res = fetch('https://example.com')
 const something = res.json()
 this.setState({something})
}

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 25

But we end up following up fetch() with a series of then()s.

componentDidMount() {
 fetch('https://example.com')
 .then((res) => res.json())
 .then((something) => this.setState({something}))
}

then() allows us to program asynchronously (by allowing componentDidMount() to
wait for the Promise to be resolved). Although, this syntax can be unintuitive
and not readable.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 26

Programming asynchronously using async/await

async/await provides syntax to program asynchronously in an intuitive and
clean way.

Usage:

— async function() denotes that the function() will work asynchronously.

— await expression enables the program to wait for expression to be resolved.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 27

Example:9

async componentDidMount() {
 const res = await fetch('https://example.com')
 const something = await res.json()
 this.setState({something})
}

9 See in CodePen

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 28

https://codepen.io/bmutlu/pen/ExxgZNN?editors=0010

async Functions10

Any function can be asynchronous and use async. Useful where the function
has to wait for another process.

async addTag(name) {

 if(this.state.tags.indexOf(name) === -1) {

 await this.setState({tags: [...this.state.tags, name]});

 this.setCourses();

 }

}

10 See example in CodePen

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 29

https://codepen.io/bmutlu/pen/WNNvdJW?editors=0011

Quiz 3

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 30

https://canvas.wisc.edu/courses/219500/quizzes/213591

APIs for advanced
interaction

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 31

Interaction Libraries

— react-beautiful-dnd: Examples

— react-smooth-dnd: Demo

— React DnD: Examples

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 32

https://github.com/atlassian/react-beautiful-dnd
https://react-beautiful-dnd.netlify.com/?path=/story/single-vertical-list--basic
https://github.com/kutlugsahin/react-smooth-dnd
https://kutlugsahin.github.io/smooth-dnd-demo/
http://react-dnd.github.io/react-dnd/about
http://react-dnd.github.io/react-dnd/examples

Component Libraries

— Material UI

— Material Kit React: Demo

— Rebass

— Grommet

— React Desktop : Demo

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 33

https://github.com/mui-org/material-ui
https://www.creative-tim.com/product/material-kit-react/?partner=91096
https://demos.creative-tim.com/material-kit-react/#/
https://rebassjs.org
https://v2.grommet.io
http://reactdesktop.js.org
https://reactdesktop.js.org/demo/

Managing Data

— React Virtualized: Demo

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 34

https://github.com/bvaughn/react-virtualized/tree/master/docs#documentation
https://bvaughn.github.io/react-virtualized/#/components/List

Assignment Preview

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 35

React 3

Deliverable options for React 2 :

A course recommender application

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 36

Problem 1: Definition

Load in a json file of previous courses located. The user should be able to

view the contents at this url as courses that the user has previously taken.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 37

Problem 1: Suggested Workflow

1. Fetch data from server

2. Create a new component to represent previously taken courses. This
component will look somewhat like the Course component, but it will be
simpler and won’t have options to add the course to the cart.

3. Create a new component to hold the previously taken courses. Make this
component accessible from the app (maybe another tab on the top or a tab
within the cart page).

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 38

Problem 2

Create a rating system for previously taken courses. The user should be able

to rate some or all of the previously taken courses loaded from the json file.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 39

Problem 2: Suggested Workflow

1. Create a component for rating a specific course.

2. Create a component for holding all of the rating components.

3. Make the holder accessible from the search tab.

4. Save the data from the holder in the state of the lowest ancestor of any
component that will need it

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 40

Problem 3

Create a way for the user to select areas of interest that you define. These

areas can be general or specific. Some examples might be computer science,

artificial intelligence, or science.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 41

Problem 3: Suggested Workflow

1. Generate a list of interest areas based on the course data.

2. Create a component for the user to select interest areas as defined in step 1.

3. Make this component accessible from the search tab.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 42

Problem 4

Recommend courses to the user based off of the rated previously taken

courses and the user's specified interest areas.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 43

Problem 4: Suggested Workflow

1. Create the recommender algorithm that takes in the rated courses and
interest areas, searches through subjects and keywords, and returns
courses most similar to the highly rated courses and the courses that
match the most interest areas.

2. Display the recommended courses to the user.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 44

Implementations will be evaluated for:

— In : efficiency, elegance, clean, and readable

— In : usability, visual design, navigation model

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 45

My Simple Recommender

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 46

My simple recommender, constraints

Requirements:

— Users are given a set of elements to evaluate

— Evaluations are standardized into a ranking scheme

— The ranking scheme is used to look up matches

— Top match is returned as a recommendation

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 47

My simple recommender, design decisions

Design decisions:

— Give the user a randomly generated set of swatches

— Allow users to provide like/dislike ratings

— Average out the colors of liked swatches

— Give the user a recommend swatch with the average

Italics indicate the simplest possible implementation.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 48

My simple recommender, component structure

<App />
 <Swatch />
 ...
 <RecommendedSwatch />

Plus, possibly a function component for ranking.

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 49

A few pieces of advice

— Start early

— Google (or Bing, DuckDuckGo, etc.) is your friend

— E.g., even if we cover correct syntax in class, slides are not useful for
debugging

— Use debugging tools

— Compiler errors, React Development Tools, console.log()

— Come to office hours (early)

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 50

What did we learn today?

— Optimizing performance in React

— Advanced asynchronous updating

— APIs for advanced interaction

— Assignment Preview

© Building User Interfaces | Professor Mutlu | Lecture 11: React 4 — Advanced Concepts 51

