
Building User Interfaces

Design Paradigms,
Patterns, & Languages
Professor Bilge Mutlu

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 1

What we will learn today?

— Design paradigms

— Design patterns

— Design languages

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 2

Recap: What is interaction
design?

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 3

Interaction Design

Definition: Defining behaviors for a system that engages the full spectrum of
its user’s perception, cognition, and movements.

Differs from visual design in its closer and more complex relationship to user
behavior and context.

Example: visual designers do not think about navigation models!

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 4

Five Dimensions of Interaction
Design1

1. 1D: Words

2. 2D: Visual representations

3. 3D: Physical objects and space

4. 4D: Time

5. 5D: Behavior

We talked about visual design and navigation,
but how do we address all these dimensions?

1 Interaction Design Foundation

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 5

https://www.interaction-design.org/literature/article/what-is-interaction-design

Interaction Design
Paradigms

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 6

What is a Design Paradigm?

Definition: An archetypal solution or an approach to solving design problems.

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 7

Historical Interaction Design Paradigms

1. Implementation-centric

2. Metaphoric

3. Idiomatic

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 8

Implementation-centric Design

Definition: Interaction design maps directly to how system functions are
implemented.

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 9

Pros & Cons of Implementation-centric Design

Pros:

1. Very easy to build, easy to debug, easy to troubleshoot

Cons:

1. Requires learning how the functions work

2. Requires skills in using the functions

3. The system cannot perform high-level actions

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 10

Source2 3

3 Entrepreneur Magazine

2 Pintrest

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 11

https://www.entrepreneur.com/article/243311
https://www.pinterest.com/pin/355010383103931950/

Metaphorical Design

Definition: Following a real-world metaphor that users are expected to be
familiar with.

Metaphorical designs "jump-start" user mental models, rely on their existing
knowledge of how things work in the real-world, and thus eliminate learning.

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 12

Source4

4 Wikipedia: Magic Cap

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 13

https://en.wikipedia.org/wiki/Magic_Cap

Source56

6 NN Group: The Anti-Mac Interface

5 Wikipedia: Magic Cap

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 14

https://www.nngroup.com/articles/anti-mac-interface/
https://en.wikipedia.org/wiki/Magic_Cap

Source7

7 UX Planet: Metaphorical Design

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 15

https://uxplanet.org/metaphors-and-analogies-in-product-design-b9af77c18dba

Source8

8 Apple App Store: 76 Synthesizer

16

https://apps.apple.com/us/app/76-synthesizer/id471645148

17

Pro Tip 1: Metaphors use a familiar model from another domain (e.g., building
vs. computer windows); analogues are similar to models in the same category
(e.g., physical cards vs. e-cards).

Pro Tip 2: Metaphors can be applied at different levels of abstraction.

Pro Tip 3: Mixed metaphors bring together models from different domains in
a single design.

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 18

Global Metaphor9

Definition: A global metaphor provides a single, overarching framework for all
the metaphors in the system (e.g., Magic Cap).

Pros: They work well in expert interfaces where the interface simulates a real-
world system.

Cons: Inability to scale; lack of familiar real-world system for entirely new
capabilities; cultural differences; inability to adapt as capabilities evolve.

9 Cooper et al., 2014, About Face

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 19

Idiomatic Design10

Definition: Building dedicated, highly
expressive interaction capabilities that users
must learn.

Mapping cursor movements on a screen to
mouse movements is an extremely successful
example.

10 Image Source

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 20

https://beconnected.esafety.gov.au/topic-library/essentials/the-absolute-basics/what-is-a-computer/what-is-a-mouse#

1112

12 Image Source

11 Image Source

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 21

https://www.idownloadblog.com/2018/11/07/send-voice-messages-iphone-ipad-mac/
https://storage.googleapis.com/spec-host-backup/mio-design%2Fassets%2F1x2NU6vyNNO9oDBAOabnED4ktz_jum_Z_%2Fstandard-behavior-visibility-dismissible.png

Developing Idioms13

In designing idioms involve, three elements
are established:

1. Primitives: atomic actions, e.g., point,
click

2. Compounds: complex actions, e.g.,
double-click

3. Idioms: higher-level elements, e.g.,
deleting text

13 Cooper et al., 2014, About Face

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 22

Quiz 1

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 23

https://canvas.wisc.edu/courses/219500/quizzes/214778

Quiz 2

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 24

https://canvas.wisc.edu/courses/219500/quizzes/214780

Affordances

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 25

Affordances

Definition: The perceived properties of a design element that give clues about
how to interact with it. Designers have borrowed the concept from ecological
psychology.

Theoretical Roots: James Gibson (1977, 1979) suggested that the human
environment is structured in a way that communicates action possibilities
through affordances.

Which environment affords walking?

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 26

27

Affordances in Design

Perceptible affordances enable users to
intuitively recognize actions that are possible
with interface elements.14

Affordances can also be hidden and false.

14 Figure: Gaver, 1991, Technology Affordances

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 28

False Affordances: There is perceptual information, but no affordance or
incorrect affordance.

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 29

Hidden Affordance: There is no perceptual information, but there is
(idiomatically designed) affordance.

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 30

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 31

Perceptible Affordances: The perceptual information and the affordance are
both present.

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 32

In-Class Activity
Metaphor & Affordance Deconstruction

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 33

34

35

Design Patterns

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 36

Design Patterns

Definition: A design pattern is a general,
reusable solution to a commonly occurring
problem within a given context.

Originally developed by Christopher
Alexander (1977; A Pattern Language) to
address problems in architecture and city
planning.15

15 Smart Cities Dive

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 37

https://www.smartcitiesdive.com/ex/sustainablecitiescollective/what-urban-design/1074316/

Design Patterns in UX

In the last decade, designers have also
developed and refined patterns for overall
structure and organization, components and
controls.16

16 Neil, 2010, 12 Standard Screen Patterns

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 38

http://designingwebinterfaces.com/our-patterns-in-print

Source17

17 Neil, 2010, 12 Standard Screen Patterns

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 39

http://designingwebinterfaces.com/our-patterns-in-print

Pros & Cons of Design Patterns

Pros:

1. Reducing design time and effort

2. Improving the quality of design
solutions

3. Establishing familiarity across
systems

4. Providing a baseline or state of
the art

Cons:

1. Not every design problem will
warrant a pattern

2. Patterns may not exist for new
design spaces

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 40

Quiz 3

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 41

https://canvas.wisc.edu/courses/219500/quizzes/214791

Design Languages

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 42

The Problem with Patterns

Problem 1. Can I piece together different patterns to make a complete design?
No, as this eclectic design would lack coherence.

Problem 2. How do I choose which pattern to use? Are patterns
interchangeable? No, there has to be a principle to the selection of patterns.

Problem 3: Pattern languages help you create a design that is consistent
vertically. How do we create a system that is consistent horizontally? I.e., how
do we achieve visual and behavioral consistency in designs?

The solution: Design languages!

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 43

Enter Pattern Languages

Define: A complete and hierarchical collection of patterns for a family of
design problems.

Patterns are words (e.g., a component) that are connected with grammar rules
to make sentences (e.g., a screen) and eventually language (e.g., user
experience).18

The pattern language can be thought of as patterns being applied at different
levels. Let's see an example.

18 Kruschitz & Hitz, 2009

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 44

https://www.researchgate.net/publication/232641271_The_anatomy_of_HCI_design_patterns

Action
Level

Task
Level

Experience
Level

Paging

Stepping

Sorting

Searching

Shopping cart

Wizard

Good defaults Choices Exit

List builder

Shopping

Teaser Menu

What’s new

Informing

Breadcrumbs

Identify

My Site

Login

Business Goals
Customer Satisfaction

Selling products

Information providing

Sitemap

Getting overview

E-Commerce
Product Support
Site

Posture
Level

Small Corporate
Site

Portal

Homepage3-column layout

Personal Site

Locating

Product
Comparisons

Action Buttons

Theme-sites Community Site

Progressive
Filtering

News Site
Templates

Playing

Discovering

News Letter

Browsing

Guided Tour
Poll Forum

Expressing

Figure 2: A partial pattern language for web design (centred around “shopping”)

Every site type has a primary experience that it
wants to offer. For example, an e-commerce site is
primarily for a shopping experience. However,
secondary experiences may include community-
building (between buyers) or information gathering
(about the products). Interaction designers need to
balance these experiences and create a consistent
user experiences for the entire site.

In practice, this will mean that an e-commerce site
will use some elements from secondary experiences.
In a similar way, a news site may use elements from
a shopping experience for dealing with premium
paid for content.

4.3 Task patterns
The task level is the level where we start to see most
concrete and well-known patterns such as SHOPPING
CART or PRODUCT COMPARISON. These will point to
lower-level task patterns such as WIZARD or LIST
BUILDER that are needed in high level task patterns.
Task patterns are describing solutions to small user
problems that are part of a higher level
“experience”. Typically a task pattern describes a

series of interactions on one or more objects for
solving a problem. Such a series corresponds to a
task sequence needed to achieve a task goal. Task
patterns are relatively domain independent. The
posture and experience patterns set the context
specifics and the task patterns are used to fill in the
blanks. Task patterns can often be ‘drawn’ using
flow diagrams and sketches.

4.4 Action patterns
Action level patterns are not really related to a
clearly defined user goal. A PUSHBUTTON or CLEAR
EXITS are actions that are only meaningful in real
tasks such as “order”, “go the next step” etc. We call
these “action patterns” and they are often similar to
widgets. They occur is almost all task patterns and
are the lowest level of building blocks we still want
to call a pattern. The solutions described in them are
usually specific uses of well known widgets or
describe custom-made widgets.

The different levels and associated patterns can be
shown in a graph of connected patterns, see Figure
2. In the graph all types of inter-pattern relationships

Source19

19 van Welie & van der Veer, 2003

45

http://welie.com/papers/Welie-Interact2003.pdf

Business Goals

Definition: Conceptual design that captures the role that the design plays in
user's life, i.e., the mission of the application, e.g., "helping users achieve fitness
goals."

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 46

Source20

20 Image source

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 47

https://ant.design/docs/spec/values

Posture-Level Patterns

Definition: The structure that an application follows, i.e., what type of
application it is, e.g., "a calorie tracking app," "a a step counter app," or "a life
coaching app."

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 48

Source21

21 Source for images

49

https://www.cosmopolitan.com/health-fitness/a19473227/best-fitness-apps/

Elements of a Posture-level Pattern

Once we determine the posture of an application, it gives us guidance on:

— Structure

— Components

— User experience

— Alternatives/competitors

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 50

Structure: Central canvas with supporting
panels22

Components: Canvas, dashboard, score
panel, data summary

UX: Measurement during the activity, review
later

Competitors: Strava, RunKeeper

22 Image source

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 51

https://www.shape.com/fitness/training-plans/best-free-apps-runners

Experience-Level Patterns

Definition: The user goals that make up the user experience that the application
supports, e.g., activity tracking, coaching, and reviewing.

Experience-level patterns can also capture the quality of the user experience,
e.g., motivational coaching.

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 52

Source23

23 Image source

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 53

https://www.imore.com/best-health-and-fitness-apps-apple-watch

Elements of an Exprience-Level
Pattern24

— Primary goals, e.g., activity tracking

— Secondary goals, e.g., community
building

24 Image source

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 54

https://support.strava.com/hc/en-us/articles/115001631264-Inviting-a-Friend-to-your-Activity

Task-Level Patterns

Definition: Design solutions that help users accomplish sequences of actions
that make up user tasks, e.g., logging a meal, capturing a run, or completing a
workout.

Tasks point to specific application components. E.g., meal logging can be done
through a "search-and-filter" component, activity tracking can be done
through a "scoreboard" component.

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 55

Source25

25 Image sources: le", right

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 56

https://www.loseit.com/press/snapit/morepics/index.md
https://help.loseit.com/hc/en-us/articles/115007404728-How-to-Change-Your-Calorie-Budget-and-Weight-Loss-Plan

Task-level patterns can be domain independent. Business goals and posture-
level patterns set the context for these patterns.26

26 Image sources: le", right

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 57

https://support.strava.com/hc/en-us/articles/216917397-Recording-an-Activity
https://www.makeuseof.com/tag/apple-maps-google-maps-switch/

Action-Level Patterns

Definition: Design solutions that support the actions taken to complete the
steps(s) of the user's task, e.g., a "start" button to initiate activity tracking, a
selectable list entry for a food item.

Action-level patterns are the lowest level of building blocks for a design. They
are o!en called widgets or components (as in React).

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 58

Action-level patterns for a food tracking app:27

27 Image source: My Fitness Pal

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 59

https://www.macworld.com/article/3331918/best-ios-and-iphone-apps-for-weight-loss.html

Action-level patterns for a food education app:28

28 Image source: Fooducate

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 60

https://www.macworld.com/article/3331918/best-ios-and-iphone-apps-for-weight-loss.html

In-Class Activity
Pattern Language Deconstruction

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 61

Source36

36 Image sources: le", right

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 62

https://www.indiehackers.com/interview/turning-my-small-side-project-into-a-business-making-40k-mo-03874047f2
https://cronometer.com/blog/

Business Goals
Mission of the application

Posture Level
“Type” of application

Experience Level
User goals

Task Level
Task sequences

Action Level
User actions

63

A Simplifed Model29 30

Three-levels of patterns:

1. Context: Type of app

2. Flow: Components that support specific
functions

3. Implementation: The visual/behavioral
elements that implement the functions

30 More on the three-levels of patterns by Jerry Cao

29 Anders Toxboe

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 64

https://www.awwwards.com/mastering-ui-patterns-for-smarter-design.html
http://ui-patterns.com/blog/The-three-levels-of-design-patterns-implementation-flow-and-context

How do we use patterns?

Common practice: Patterns in the higher levels are defined informally, and
the task- and action-level patterns are adopted through experimentation and
trial and error.

The problem: Ineffective (e.g., lack of coherence across different levels) and
inefficient (wasted effort in experimentation).

The solution: Defining patterns top to bottom will "generate" the design when
patterns are available across all levels.31

31 van Welie & van der Veer, 2003

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 65

http://welie.com/papers/Welie-Interact2003.pdf

Where do we find patterns?32

Task- and action-level patterns are organized
into catalogues/collections based on
functional similarity.

32 Image source

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 66

https://www.webdesignerdepot.com/2018/11/how-to-add-innovation-to-ui-design-patterns/

Online Pattern Libraries

— UIPatterns.io

— UI-Patterns

— Mobbin

— UI Garage

— Welie

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 67

http://uipatterns.io/
http://ui-patterns.com/
https://mobbin.design/
https://uigarage.net/
http://www.welie.com/patterns/index.php

Design Style Guides

Definition: A vocabulary of design elements
that are repeatedly applied to interaction
design problems. These are task- and action-
level interface components that follow a
consistent look and feel in appearance and
behavior.

Non-digital example: NASA Graphics Standard
Manual.33

33 NASA

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 68

https://www.nasa.gov/sites/default/files/atoms/files/nasa_graphics_manual_nhb_1430-2_jan_1976.pdf

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 69

Source3435

35 Right: Microso" Fluent Design System

34 Le!: Google Material Design

70

https://www.microsoft.com/design/fluent/
https://material.io/design/

Source37

37 Video source

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 71

https://www.youtube.com/watch?v=vcBGj4R7Fo0

Commonly Used Design Style
Guides20

— Material Design

— Fluent Design System

— Materialize

— Ant Design

— Grommet

— Flat Remix

20 Image source

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 72

https://material.io/design/
https://www.microsoft.com/design/fluent/#/
https://materializecss.com/
https://ant.design/docs/spec/introduce
https://v2.grommet.io/
https://drasite.com/flat-remix-css
https://ant.design/docs/spec/values

Case Studies of Design Language Use

— Material studies examples

— Fluent design case studies

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 73

https://material.io/design/material-studies/
https://medium.com/microsoft-design/fluentdesignsystem/home

What did we learn today?

— Design paradigms

— Design patterns

— Design languages

© Building User Interfaces | Professor Mutlu | Lecture 12: Design Paradigms, Patterns, & Languages 74

