
Building User Interfaces

React Native 1
Introductory Concepts
Professor Bilge Mutlu

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 1

Announcements

Survey findings:

— Office hours

— 21 hours/week total

— Start assignment early

— More code samples in lectures

— Online mode was easier to follow

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 2

Office Hours

Monday

— 1:00-3:00 PM: Sanjana

— 6:00-8:00 PM: Vera

— 8:00-9:00 PM: Cole

Tuesday

— 2:30-4:30 PM: Vera

— 4:00-5:00 PM: Professor Mutlu

— 5:00-7:00 PM: Cole

Wednesday

— 2:00-4:00 PM: John

Thursday:

— 4:00-6:00 PM: Cole

— 5:15-7:15 PM: John

Friday:

— 1:00-3:00 PM: Sanjana

— 3:00-5:00 PM: Vera
© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 3

https://teams.microsoft.com/l/meetup-join/19:dc38c8ddd71746598c8ab497a3f2b074@thread.tacv2/1599098194539?context=%7B%22Tid%22:%222ca68321-0eda-4908-88b2-424a8cb4b0f9%22,%22Oid%22:%2261fbdffd-b405-4382-978f-9f8bd046a68f%22%7D
https://teams.microsoft.com/l/meetup-join/19:dc38c8ddd71746598c8ab497a3f2b074@thread.tacv2/1599098275835?context=%7B%22Tid%22:%222ca68321-0eda-4908-88b2-424a8cb4b0f9%22,%22Oid%22:%22991d7305-9a6e-4548-a8e4-2e3c78ec8a7b%22%7D

What we will learn today?

— What is React Native?

— Starting a React Native project

— Differences between ReactJS and React Native

— Communicating with Server APIs

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 4

What is React Native?

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 5

What is React Native?

Definition: A JS framework for building native, cross-platform mobile
applications using React, developed by Facebook in 2015.

Unlike ReactJS, which was a library, React Native is a framework that includes
everything that we will need to build mobile applications.

React Native supports iOS and Android development.

Enables web developers using ReactJS to easily develop mobile applications.

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 6

How does React Native work?1

As in ReactJS, React Native combines JS, JSX.

Under the hood, React Native runs the
program in the JS engine of the host platform
(iOS, Android, etc.), which renders and
interacts with native UI components, instead
of web pages, through a "bridge."

1 Image source

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 7

https://formidable.com/blog/2019/lean-core-part-4/

Alternatives to React Native2

All cross-platform alternatives to React
Native will wrap HTML + CSS + JS within a
web view and simulate mobile UI behavior.

Examples:

— Ionic

— Cordova

— Titanium

2 Image source

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 8

https://ionicframework.com/
https://cordova.apache.org/
https://www.appcelerator.com/Titanium/
https://cordova.apache.org/docs/en/latest/guide/overview/

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 9

Starting a React Native project

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 10

Two Methods Using Expo17

Node.js

To install Expo:

npm install expo-cli --global

Create and run a new project:

expo init my-new-project
cd my-new-project
expo start

Snacks

Use the Expo web editor.

17 Get started with Expo

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 11

http://expo.io
https://expo.io/learn

How is React Native different
from ReactJS?

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 12

React Native-ReactJS differences3

Good news: They are very, very similar.

Minor differences stem from how React
Native interacts with the native mobile
platform.

3 Image source

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 13

https://www.infoq.com/articles/react-native-introduction/

Instead of the HTML DOM, React Native interacts with native components
through its Bridge.

Instead of React elements that will become DOM elements, React Native uses
elements that are similar but better correspond with native components.

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 14

Key difference #1: Core Components4

Instead of div, React Native uses View.

import React, { Component } from 'react';
import { Text, View } from 'react-native';

export default class HelloWorldApp extends Component {
 render() {
 return (
 <View style={{ flex: 1, justifyContent: "center", alignItems: "center" }}>
 <Text>Hello, world!</Text>
 </View>
);
 }
}

4 See code in Snack

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 15

https://snack.expo.io/@bmutlu/hello-world

Similarly, instead of p, RN uses Text; instead of img, it uses Image.5

export default class App extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 <Image style={styles.logo} source={require('assets/uw-logo-centered-web.png')} />
 <Text style={styles.paragraph}>
 On Wisconsin!
 </Text>
 </View>
);
 }
}

5 See code in Snack

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 16

https://snack.expo.io/@bmutlu/image-and-text

Additionally, the button clicks trigger an onPress event, instead of an onClick
event.6

In ReactJS:

<Button onClick={this.updateCounter}>Press me</Button>

In React Native:

<Button title="Press me" onPress={this.handlePress} />

6 See code in Snack

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 17

https://snack.expo.io/@bmutlu/f246d8

Key difference #2: Styling7

Because RN does not use web elements, we can't use CSS styles. We instead
create stylesheets in JS.

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 backgroundColor: '#ecf0f1',
 padding: 40,
 },
 ...
});

7 See code in Snack

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 18

https://snack.expo.io/@bmutlu/styling?session_id=snack-session-!FvWzNYrI

Pro Tip: Style definitions can be done in stylesheets or in props when
components are instantiated. You can also combine both methods.8

<View>
 <Text style={styles.label}>First label</Text>
 <Text style={{fontSize: 28, color:"tomato"}}>Second label</Text>
 <Text style={[styles.label, {fontSize: 20, color:"gray"}]}>Third label</Text>
</View>

8 See code in Snack

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 19

https://snack.expo.io/@bmutlu/3aa978

Flexbox is Everything9 10

Flexbox is the only standard way of creating layouts in RN, so we have to
master it.

<View style={{flex: 1, flexDirection: 'column'}}>
 <View style={{flex: 1, backgroundColor: 'whitesmoke'}}/>
 <View style={{flex: 1, backgroundColor: 'gainsboro'}}/>
 <View style={{flex: 1, backgroundColor: 'silver'}}/>
</View>

10 React Native Guide to Layouts with Flexbox

9 Visual Flexbox Cheatsheet

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 20

https://facebook.github.io/react-native/docs/flexbox
http://flexbox.malven.co/

Below are the commonly used properties:11

flex: 1 will express how much of the container to fill.

flexDirection — row, column, row-reverse, column-reverse

alignItems — stretch, flex-start, flex-end, center, baseline

justifyContent — flex-start, flex-end, center, space-between, space-around, space-
evenly

11 See code in Snack

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 21

https://snack.expo.io/@bmutlu/flexbox?session_id=snack-session-pYM1u_i8d

Getting Screen Dimension12

Mobile devices vary significantly in screen size, and we o"en need to obtain
screen dimensions of the device using the Dimensions class in react-native.

getScreenSize = () => {
 const screenWidth = Math.round(Dimensions.get('window').width);
 const screenHeight = Math.round(Dimensions.get('window').height);
 this.setState({ screenWidth: screenWidth, screenHeight: screenHeight })
}

12 See code in Snack

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 22

https://snack.expo.io/@bmutlu/4e983f

Key difference #3: Platform-specific Components

RN provides a number of components that utilize platform capabilities that
may not be avialable in other platforms, thus for cross-platform development,
we need to utilize multiple platform-specific components.

E.g., TouchableNativeFeedback only work on Android, and the same effect can be
achieved using TouchableHighlight.

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 23

First method: Selectively render the component based on the current
platform.13

render() {
 if (Platform.OS === 'android') {
 return (
 <TouchableNativeFeedback> ... </TouchableNativeFeedback>
)
 } else {
 return (
 <TouchableHighlight> ... </TouchableHighlight>
)
 }
}

13 See code in Snack

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 24

https://snack.expo.io/@bmutlu/b95b07

Second method: We create two versions of the component, e.g., MyButton.ios.js
and MyButton.android.js.

import MyButton from '/components/MyButton';
render() {
 <MyButton />
}

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 25

Key difference #4: Animation & Gestures

Because of the resource-constrained nature of mobile platforms, applications
heavily rely on animation and gestures. In RN, CSS animations are not
available, but there are several powerful packages:

— Animated API (for animating components)

— LayoutAnimation (for layout animation)

— PanResponder (for gestures)

More on this next class!

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 26

https://facebook.github.io/react-native/docs/animated.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/panresponder.html

Key difference #5: Navigation

Most mobile applications include several screens. Using react-navigation, we can
create several screens and define navigation.

import {createAppContainer} from 'react-navigation';
import {createStackNavigator} from 'react-navigation-stack';

const MainNavigator = createStackNavigator({
 Home: {screen: HomeScreen},
 Profile: {screen: ProfileScreen},
});

const App = createAppContainer(MainNavigator);
export default App;

More on this next class!

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 27

Quiz 1

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 28

https://canvas.wisc.edu/courses/219500/quizzes/216382

Quiz 2

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 29

https://canvas.wisc.edu/courses/219500/quizzes/216383

Communicating with Server
APIs

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 30

Almost all mobile applications offer personalized information and thus have
to know who the user is through authentication.

Definition: Authentication identifying a user in the process of providing
access to system data or services based on the user's identity.

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 31

Common Authentication Methods

— Basic HTTP authentication
Requires username/password for every request

— Session-based authentication
Client receives a session ID a!er authentication, stores it in a cookie, and attaches it
to every subsequent request

— Token-based authentication
Client receives a random token at the first login and passes it as request header in
every request

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 32

— JWT-based (JSON Web Tokens) authentication
Client sends encrypted user information and receives a token, which is included in
every request and decrypted by the server

— Shared Secret Based Hash Authentication
A secret stored on the client and the server is used to hash a new token at every
request and response

In this module, we will use token-based authentication.

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 33

Token-based Authentication14

The client authenticates with a username and a
password once, receives a token, and only
sends the token for subsequent requests, until
the token times out — works like an all
inclusive resort!

14 Image source

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 34

https://nationaltokens.com/coins/gran-canaria-anfi-del-mar-view/

RESTful APIs15

Definition: REpresentational State Transfer (REST) is an architectural style for
distributed hypermedia systems.

Any information, e.g., an image, can be a resource, the key abstraction of REST.

REST uses resource methods, e.g., HTTP methods, to facilitate client-server
interaction.

15 More on RESTful APIs

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 35

https://restfulapi.net/

RESTful API Methods

In this module, we will focus on four methods:

— GET

— POST

— PUT

— DELETE

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 36

GET

Definition: HTTP method to retrieve information from the server in a way
that does not change the server (a safe method).

GET should be idempotent, returning the same information every time it is
called, until another request (POST, PUT) changes the resource.

The server will return either 200 (OK) along with the data (e.g., JSON) or 404
(NOT FOUND).

HTTP GET http://<our-domain>/users

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 37

POST

Definition: HTTP method that creates new subordinate resources, e.g., a new
user in a collection of users. POST is not safe or idempotent.

The server will usually return either 201 (Created) along with information on
the new resource and a location header. The server can also return 200 (OK) or
204 (No Content).

HTTP POST http://<our-domain>/users

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 38

PUT

Definition: HTTP method to update existing information on the server.

The server will return 200 (OK) or 204 (No Content). If the information does not
exist, the API may create the resource, as done in a POST request, and return 201
(Created).

HTTP PUT http://<our-domain>/users/<username>

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 39

DELETE

Definition: HTTP method that deletes resources from the server.

DELETE is idempotent, as calling DELETE several times does not change the
outcome.

The server will return code 200 (OK) if the response includes an entity with
status, 202 (Accepted) if the request is queued, or 204 (No Content) if it is
performed but an entity is not included.

HTTP DELETE http://<our-domain>/users/<username>

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 40

Resource Methods in React Native

For all methods, we can use fetch(). React Native GET example:

fetch('<our-domain>/endpoint')
 .then(function(response) {
 return response.json()
})

fetch('<our-domain>/endpoint', {
 method: 'GET',
})

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 41

React Native POST example:

fetch('<our-domain>/endpoint', {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 },
 body: JSON.stringify({
 userName: '<user-name>',
 password: '<password>',
 })
})

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 42

When we pass the userName and password and receive a token, we need to
encrypt what we are passing. NPM base-64 package accomplishes that.

import base64 from 'base-64';

base64.encode(username + ":" + password);

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 43

Passing Authentication Information

Example header to pass user credentials:

'Authorization', 'Basic ' + base64.encode(username + ":" + password)

Example header to pass token:

'x-access-token', result.token

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 44

React Native PUT example:

fetch('<our-domain>/endpoint', {
 method: 'PUT',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'x-access-token': <my-token>
 },
 body: JSON.stringify({
 location: 'Madison, WI'
 })
});

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 45

React Native DELETE example:

fetch('<our-domain>/endpoint', {
 method: 'DELETE',
 headers: {
 'x-access-token': <my-token>
 },
});

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 46

Endpoints

Different resource methods will use different endpoints at the server. For
example, in React Native 1 , we will use the following endpoints for https://
mysqlcs639.cs.wisc.edu:

/login — allows GET to receive the token

/users — allows POST

/users/<user-name> — allows GET, POST, PUT, DELETE

More on React Native 1 next class!

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 47

The following API can be accessed at https://mysqlcs639.cs.wisc.edu.

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 48

Server API Tools16

Easy to use tools help setting up server APIs
for user authentication, e.g., Postman.

More on how this next class!

16 Image source

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 49

https://www.getpostman.com/
https://getstream.io/blog/try-out-the-stream-api-with-postman/

Quiz 3

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 50

https://canvas.wisc.edu/courses/219500/quizzes/216384

What did we learn today?

— What is React Native?

— Starting a React Native project

— Differences between ReactJS and React Native

— Communicating with Server APIs

© Building User Interfaces | Professor Mutlu | Lecture 14: React Native — Introductory Concepts 51

