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What we will learn today?

— Accessible Building

— Storing data using AsyncStorage

— Theming Libraries

— Accessing and Using Sensor Data

— App Lifecycle using AppState

— Assignment Preview
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Accessible Building
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Accessibility in Web Technologies1

From the three-layered cake to the Peanut M&M:

1 Image sources: le", right
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Accessible Rich Internet Applications (ARIA)2

aria is a set of HTML attributes that make web components avialable to 
assistive technologies.

<div id="percent-loaded" role="progressbar" aria-valuenow="75" 
     aria-valuemin="0" aria-valuemax="100">
</div>

2 MDN Web Docs: ARIA
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Accessibility in React Native3

RN provides us with access to assistive technologies that mobile platforms 
provide (e.g., VoiceOver on iOS or TalkBack on Android) through component 
attributes.

<View accessible={true}>
  <Text>List item one</Text>
  <Text>List item two</Text>
</View>

3 React Native Accessibility
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React Native Accessibility Properties

accessible attribute indicates whether the component is an accessibility 
element and, if so, groups its children in a single selectable component.

accessibilityLabel attribute defines screen reader descriptions of components.

accessibilityHint attribute helps users understand what will happen if they 
perform the action on the accessibility element.
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React Native Accessibility Actions

Standard, e.g., magicTap, escape, activate, increment, decrement, longpress, or 
custom actions, handled by onAccessibilityAction.

onAccessibilityAction={(event) => {
    switch (event.nativeEvent.actionName) {
      case 'longpress':
        // take action
      ...
    }
  }}
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Quiz 1

Complete the Canvas quiz.
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AsyncStorage
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What is AsyncStorage?

AsyncStorage is a simple, unencrypted, persistent, key-value storage system that 
is global to the app. 

Four key features:

1. Simple: Core functionality involves set and get methods.

2. Unencrypted: Access is controlled by location access.

3. Persistent: Data is saved until it is explicitly deleted.

4. Global: Saved data is global to the app. 
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How does it work?

We use the AsyncStorage JS library:4

import AsyncStorage from '@react-native-community/async-storage';

Through RN Bridge, the corresponding native code library will store the data 
in an appropriate format, in a dictionary or files in iOS and in a database in 
Android.

All AsyncStorage operations are asynchronous and therefore return a Promise.

4 react-native AsyncStorage library has been deprecated, and the current recommendation is to use @react-native-community/async-
storage, although there might be further changes in the near future.
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Saving Data

storeData = async () => {
  try {
    await AsyncStorage.setItem('@storage_Key', 'stored value')
  } catch (e) {
    // saving error
  }
}
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Retrieving Data

getData = async () => {
  try {
    const value = await AsyncStorage.getItem('@storage_Key')
    if(value !== null) {
      // value previously stored
    }
  } catch(e) {
    // error reading value
  }
}
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Other operations5

— removeItem(key) removes the item that corresponds to a key.

— mergeItem(key) merges an existing key value with an input value.

— clear() erases all AsyncStorage.

— getAllKeys() retrieves all keys for your app.

— multiGet(keys), multiSet(keys,values), multiRemove(keys), 
multiMerge(keys,values) are batch operations for array data.

5 More information on RN AsyncStorage
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Theming in React Native
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Popular Theme Libraries and Toolkits

— NativeBase

— React Native Elements
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https://nativebase.io/
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NativeBase6 7

For iOS and Android.

Customized using NativeBase Customizer.

Different themes using StyleProvider.

<Button light style={{borderRadius:8}}>
  <Text>Contact Us</Text>
</Button>

7 StyleProvider

6 Image source
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Importing themes:

import getTheme from './native-base-theme/components';
import material from './native-base-theme/variables/material';

Applying themes using getTheme():

<StyleProvider style={getTheme(material)}>
  <Container>
    <Content>
      ...
    </Content>
  </Container>
</StyleProvider>
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Sensors
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Sensor Libraries

Two options:

1. React Native sensors library: react-native-sensors

2. Expo sensors library:expo-sensors
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Expo Sensors Library

Provides access to device sensors through specific components:

— Accelerometer: provides access to the accelerometer sensor, which captures 
displacement in 3D.

— Barometer: provides access the device barometer sensor, which captures 
changes in air pressure.

— Gyroscope: provides access the device gyroscope sensor, which captures 
changes in rotation in 3D space. 

— Magnetometer: provides access the device magnetometer sensor, which 
measures changes in the magnetic field. MagnetometerUncalibrated: provides 
access to uncalibrated raw values from the magnetometer.

— Pedometer: Provides step count from the native sensor libraries.
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How to Access Sensor Data

Install the sensor library:

expo install expo-sensors

Import the sensor component:

import { Accelerometer } from 'expo-sensors';

Check if the sensor is avialable:

Accelerometer.isAvailableAsync() // returns true or false
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Create listener for sensor events:

Accelerometer.addListener(listener)

Best practice is to create subscribe and unsubscribe functions: 

_subscribe = () => {
    this._subscription = Accelerometer.addListener(accelerometerData => {
        this.setState({ accelerometerData });
    });
};
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To remove listeners for sensor events:

Accelerometer.removeAllListeners()

To subscribe to updates to the sensor data at specified intervals:

Accelerometer.setUpdateInterval(intervalMs)
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Access to Other Hardware

— Camera using expo-camera renders a preview of the front or the back camera.

— Battery using expo-battery provides battery information.

— Haptics using expo-haptics provides haptic feedback using the Taptic Engine 
on iOS and Vibrator system service on Android.

— Audio using expo-av provides basic audio playback and recording.

— Brightness using expo-brightness allows getting and setting screen 
brightness. 
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Demos

— Accelerometer

— Step Counter
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Quiz 2

Complete the Canvas quiz.
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Quiz 3

Complete the Canvas quiz.
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App Lifecycle Using AppState
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The Problem

Everything we have been doing so far assumes that our app is loaded on the 
screen and is running as a foreground process.

We need to be able to perform background processes or safely save the user's 
data in case the OS suspends it or the user quits it.
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The Solution

AppState provides information on the current state of the app:

— active indicates that the app is running in the foreground

— background indicates that the app is running in the background

— inactive indicates that the app is transitioning between foreground and 
background
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import {AppState} from 'react-native';

state = { appState: AppState.currentState};

componentDidMount() {
    AppState.addEventListener('change', this._handleAppStateChange);
}

_handleAppStateChange = (nextAppState) => {
  if (this.state.appState.match(/inactive|background/) 
      && nextAppState === 'active') {
      // Do something
    }
    this.setState({appState: nextAppState});
};
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Example Background Process

BackgroundFetch from expo-background-fetch allows performing background fetch 
tasks using the TaskManager Native API.

BackgroundFetch.registerTaskAsync(taskName, options)
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Assignment Preview
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React Native 1 : Prototyping

Designing/prototyping screens, navigation to support the capabilities:

— Creating a day view that shows user meals and exercises and make it the 
default view,

— Providing the ability to add a meal to a day and foods to meals,

— Creating a section of the day view that allows the user to compare their 
goals versus the current day’s stats (e.g., total calories consumed),

— Developing a view that allows the user to add/edit/remove exercises to the 
current day.
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In three parts:

1. Part 1: Paper Prototyping — using ... paper!

— Deliverable: photos of paper prototypes

2. Part 2: Visual & Interaction Design — using Adobe XD

— Deliverable: screenshots of static screens

3. Part 3: Interactive Prototyping, using Adobe XD

— Deliverable: interactive prototype, video demonstration
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Quiz 4

Complete the Canvas quiz.
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What did we learn today?

— Accessible Building

— Storing data using AsyncStorage

— Theming Libraries

— Accessing and Using Sensor Data

— App Lifecycle using AppState

— Assignment Preview
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