
Building User Interfaces

React Native
Advanced Concepts
Professor Bilge Mutlu

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 1

What we will learn today?

— Accessible Building

— Storing data using AsyncStorage

— Theming Libraries

— Accessing and Using Sensor Data

— App Lifecycle using AppState

— Assignment Preview

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 2

Accessible Building

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 3

Accessibility in Web Technologies1

From the three-layered cake to the Peanut M&M:

1 Image sources: le", right

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 4

https://www.lifewire.com/three-layers-of-web-design-3468761
https://www.interaction-design.org/literature/article/accessibility-usability-for-all
Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Accessible Rich Internet Applications (ARIA)2

aria is a set of HTML attributes that make web components avialable to
assistive technologies.

<div id="percent-loaded" role="progressbar" aria-valuenow="75"
 aria-valuemin="0" aria-valuemax="100">
</div>

2 MDN Web Docs: ARIA

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 5

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Accessibility in React Native3

RN provides us with access to assistive technologies that mobile platforms
provide (e.g., VoiceOver on iOS or TalkBack on Android) through component
attributes.

<View accessible={true}>
 <Text>List item one</Text>
 <Text>List item two</Text>
</View>

3 React Native Accessibility

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 6

https://facebook.github.io/react-native/docs/accessibility
Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

React Native Accessibility Properties

accessible attribute indicates whether the component is an accessibility
element and, if so, groups its children in a single selectable component.

accessibilityLabel attribute defines screen reader descriptions of components.

accessibilityHint attribute helps users understand what will happen if they
perform the action on the accessibility element.

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 7

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

React Native Accessibility Actions

Standard, e.g., magicTap, escape, activate, increment, decrement, longpress, or
custom actions, handled by onAccessibilityAction.

onAccessibilityAction={(event) => {
 switch (event.nativeEvent.actionName) {
 case 'longpress':
 // take action
 ...
 }
 }}

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 8

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Quiz 1

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 9

https://canvas.wisc.edu/courses/219500/quizzes/218794

AsyncStorage

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 10

Bilge Mutlu

Bilge Mutlu

What is AsyncStorage?

AsyncStorage is a simple, unencrypted, persistent, key-value storage system that
is global to the app.

Four key features:

1. Simple: Core functionality involves set and get methods.

2. Unencrypted: Access is controlled by location access.

3. Persistent: Data is saved until it is explicitly deleted.

4. Global: Saved data is global to the app.

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 11

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

How does it work?

We use the AsyncStorage JS library:4

import AsyncStorage from '@react-native-community/async-storage';

Through RN Bridge, the corresponding native code library will store the data
in an appropriate format, in a dictionary or files in iOS and in a database in
Android.

All AsyncStorage operations are asynchronous and therefore return a Promise.

4 react-native AsyncStorage library has been deprecated, and the current recommendation is to use @react-native-community/async-
storage, although there might be further changes in the near future.

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 12

https://reactnative.dev/docs/asyncstorage?redirected
https://reactnative.dev/docs/asyncstorage?redirected
Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Saving Data

storeData = async () => {
 try {
 await AsyncStorage.setItem('@storage_Key', 'stored value')
 } catch (e) {
 // saving error
 }
}

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 13

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Retrieving Data

getData = async () => {
 try {
 const value = await AsyncStorage.getItem('@storage_Key')
 if(value !== null) {
 // value previously stored
 }
 } catch(e) {
 // error reading value
 }
}

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 14

Bilge Mutlu

Bilge Mutlu

Other operations5

— removeItem(key) removes the item that corresponds to a key.

— mergeItem(key) merges an existing key value with an input value.

— clear() erases all AsyncStorage.

— getAllKeys() retrieves all keys for your app.

— multiGet(keys), multiSet(keys,values), multiRemove(keys),
multiMerge(keys,values) are batch operations for array data.

5 More information on RN AsyncStorage

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 15

https://github.com/react-native-community/async-storage
https://github.com/react-native-community/async-storage
Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Theming in React Native

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 16

Popular Theme Libraries and Toolkits

— NativeBase

— React Native Elements

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 17

https://nativebase.io/
https://react-native-elements.github.io/react-native-elements/

NativeBase6 7

For iOS and Android.

Customized using NativeBase Customizer.

Different themes using StyleProvider.

<Button light style={{borderRadius:8}}>
 <Text>Contact Us</Text>
</Button>

7 StyleProvider

6 Image source

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 18

https://nativebase.io/customizer/
https://docs.nativebase.io/Customize.html%23theme-and-variables-headref
https://nativebase.io/nativebase-customizer
Bilge Mutlu

Bilge Mutlu

Importing themes:

import getTheme from './native-base-theme/components';
import material from './native-base-theme/variables/material';

Applying themes using getTheme():

<StyleProvider style={getTheme(material)}>
 <Container>
 <Content>
 ...
 </Content>
 </Container>
</StyleProvider>

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 19

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Sensors

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 20

Sensor Libraries

Two options:

1. React Native sensors library: react-native-sensors

2. Expo sensors library:expo-sensors

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 21

Bilge Mutlu

Expo Sensors Library

Provides access to device sensors through specific components:

— Accelerometer: provides access to the accelerometer sensor, which captures
displacement in 3D.

— Barometer: provides access the device barometer sensor, which captures
changes in air pressure.

— Gyroscope: provides access the device gyroscope sensor, which captures
changes in rotation in 3D space.

— Magnetometer: provides access the device magnetometer sensor, which
measures changes in the magnetic field. MagnetometerUncalibrated: provides
access to uncalibrated raw values from the magnetometer.

— Pedometer: Provides step count from the native sensor libraries.

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 22

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

How to Access Sensor Data

Install the sensor library:

expo install expo-sensors

Import the sensor component:

import { Accelerometer } from 'expo-sensors';

Check if the sensor is avialable:

Accelerometer.isAvailableAsync() // returns true or false

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 23

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Create listener for sensor events:

Accelerometer.addListener(listener)

Best practice is to create subscribe and unsubscribe functions:

_subscribe = () => {
 this._subscription = Accelerometer.addListener(accelerometerData => {
 this.setState({ accelerometerData });
 });
};

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 24

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

To remove listeners for sensor events:

Accelerometer.removeAllListeners()

To subscribe to updates to the sensor data at specified intervals:

Accelerometer.setUpdateInterval(intervalMs)

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 25

Bilge Mutlu

Bilge Mutlu

Access to Other Hardware

— Camera using expo-camera renders a preview of the front or the back camera.

— Battery using expo-battery provides battery information.

— Haptics using expo-haptics provides haptic feedback using the Taptic Engine
on iOS and Vibrator system service on Android.

— Audio using expo-av provides basic audio playback and recording.

— Brightness using expo-brightness allows getting and setting screen
brightness.

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 26

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Demos

— Accelerometer

— Step Counter

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 27

https://github.com/wisc-hci-curriculum/react-native-demos-sensor-example
https://github.com/wisc-hci-curriculum/react-native-demos-step-counter-example

Quiz 2

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 28

https://canvas.wisc.edu/courses/219500/quizzes/218795

Quiz 3

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 29

https://canvas.wisc.edu/courses/219500/quizzes/218796

App Lifecycle Using AppState

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 30

The Problem

Everything we have been doing so far assumes that our app is loaded on the
screen and is running as a foreground process.

We need to be able to perform background processes or safely save the user's
data in case the OS suspends it or the user quits it.

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 31

Bilge Mutlu

Bilge Mutlu

The Solution

AppState provides information on the current state of the app:

— active indicates that the app is running in the foreground

— background indicates that the app is running in the background

— inactive indicates that the app is transitioning between foreground and
background

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 32

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

import {AppState} from 'react-native';

state = { appState: AppState.currentState};

componentDidMount() {
 AppState.addEventListener('change', this._handleAppStateChange);
}

_handleAppStateChange = (nextAppState) => {
 if (this.state.appState.match(/inactive|background/)
 && nextAppState === 'active') {
 // Do something
 }
 this.setState({appState: nextAppState});
};

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 33

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Example Background Process

BackgroundFetch from expo-background-fetch allows performing background fetch
tasks using the TaskManager Native API.

BackgroundFetch.registerTaskAsync(taskName, options)

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 34

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Assignment Preview

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 35

React Native 1 : Prototyping

Designing/prototyping screens, navigation to support the capabilities:

— Creating a day view that shows user meals and exercises and make it the
default view,

— Providing the ability to add a meal to a day and foods to meals,

— Creating a section of the day view that allows the user to compare their
goals versus the current day’s stats (e.g., total calories consumed),

— Developing a view that allows the user to add/edit/remove exercises to the
current day.

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 36

Bilge Mutlu

In three parts:

1. Part 1: Paper Prototyping — using ... paper!

— Deliverable: photos of paper prototypes

2. Part 2: Visual & Interaction Design — using Adobe XD

— Deliverable: screenshots of static screens

3. Part 3: Interactive Prototyping, using Adobe XD

— Deliverable: interactive prototype, video demonstration

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 37

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Quiz 4

Complete the Canvas quiz.

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 38

https://canvas.wisc.edu/courses/219500/quizzes/218797

What did we learn today?

— Accessible Building

— Storing data using AsyncStorage

— Theming Libraries

— Accessing and Using Sensor Data

— App Lifecycle using AppState

— Assignment Preview

© Building User Interfaces | Professor Mutlu | Lecture 17: React Native — Advanced Concepts 39

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

Bilge Mutlu

