Human-Computer Interaction COULTSE Introduction Professor Bilge Mutlu

© Human-Computer Interaction | Professor Mutlu | Week 1: Course Introduction

1

Today's Agenda

- » Topic introduction
- » HCI research at Wisconsin
- » Course introduction

Instructional Team

Instructor: Bilge Mutlu

Professor of Computer Science, Psychology, & Industrial Engineering

Director of People and Robots Laboratory

PhD, 2009, Carnegie Mellon University <u>bilge@cs.wisc.edu</u>, <u>http://bilgemutlu.com</u>

Instructional Team

TA: Dakota Sullivan

Second year graduate student

Department of Computer Sciences

CS-770 Veteran

How about you? Give us your name, program, year.

What is this course about?

© Human-Computer Interaction | Professor Mutlu | Week 1: Course Introduction

6

Human-Computer Interaction

What does HCI mean to you? Who can give a definition?

© Human-Computer Interaction | Professor Mutlu | Week 1: Course Introduction

1 and we shared

years l

couldpe datadrier

is way

8

Different Perspectives

Design Implications

I want to design a computer system and need to know what to design.

Evaluation

I have designed a computer system and would like to understand whether it is any good (for people).

Understanding Impact

I would like to understand how a computer system that I designed affects people's lives.

Societal Change

I would like to understand how a computer technology affects society at large.

Definitions

"...a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them."

-ACM

Where does HCI fit within Computer Science?

What's missing here?

"The old computing is about what computer can do, the new computing is about what people can do [using the computer]."²

— Schneiderman, 2002

²Image source

³Image sources: <u>1</u>, <u>2</u>, <u>3</u>, <u>4</u>, <u>5</u>, <u>6</u>

Where does HCI fit within psychology/ education?

What's missing here?

© Human-Computer Interaction | Professor Mutlu | Week 1: Course Introduction

⁵Image sources: <u>1</u>, <u>2</u>

Seminar in HCI **Research Methods** in HCI **Independent Study** in HCI

⁷ <u>Microsoft Office</u>

1945 (Vannevar Bush)⁸

2014 (Microsoft)

⁸Wired, Microsoft

Questions?

HCI Research @ Wisconsin

CDIS [CS, iSchool] Distributed [ISyE, EdPsych, Psych, ME]

HCI Research in CS

Yea-Seul Kim

Bilge Mutlu

Michael Gleicher

Information visualization, data-driven decision making HRI, end-user programming, educational technology Information visualization, graphics, HRI

© Human-Computer Interaction | Professor Mutlu | Week 1: Course Introduction

Yuhang Zhao

AR/VR interfaces, accessibility

HCI Research at the iSchool

Corey Jackson

J

Medical informatics, health decision making, information visualization

Jacob Thebault-Spieker

Social computing, bias and fairness

Other HCI-related Research on Campus

John Lee (ISyE)

Paula Niedenthal (Psych)

Martina Rau (Ed Psych)

AR/VR, automotive interfaces

Affective humanmachine interaction Educational data mining, intelligent tutors

© Human-Computer Interaction | Professor Mutlu | Week 1: Course Introduction

Michael Zinn (ME)

Haptic interfaces

Questions?

Course Outline

Why is this class online?

- The University wanted a small number of classes to be offered online for \rightarrow students who may not be able to attend on campus instruction.
- » 770 is a mature course that has been taught in all formats.

What's the difference between 570 and 770? And now there is a 571?
"...a discipline concerned with (570, 571) [the design, evaluation and implementation of interactive computing systems for human use] and with (770) [the study of major phenomena surrounding them]."

— ACM

770

- » Research methods
- » For grads from
 across campus
- » Project-based
- » No technical background

570

- » Design methods
- » For undergrads
- » Project-based

» No technical background

571

- » Design/building methods
- » For CS undergrads
- » Assignmentbased
- Needs at least
 CS-400 & JS

Let's focus on 770

Learning Goals

- Define research questions, construct hypotheses, map out and identify 1. gaps in the research literature, and situate research questions and hypotheses in existing knowledge
- 2. Gain familiarity with seminal research across various topics in humancomputer interaction
- 3. Determine the research approach that best fits a research question, identify variables of interest for empirical investigation, and design qualitative, qualitative, and hybrid studies

- 1. Determine appropriate objective, behavioral, physiological, subjective, and composite measures for empirical investigation
- 2. Design survey questions, construct scales, and assess reliability and validity
- 3. Analyze qualitative and quantitative data using grounded theory and statistical methods
- Carry out a project to investigate an original research question in human-4. computer interaction
- 5. Write an academic paper to report on research design and findings

Setting Expectations

- Be prepared to read a lot ~ 2 papers + 1 book chapter each week 1.
- 2. This class will take about 10-15 hours/week (university guidelines require a *minimum* of 9 hours for 3-credit courses, and that's for undergraduates)
- 3. Total of 5 assignments, each can take 6–12 hours of work
- 4. Semester–long project where you will work with others
- 5. Be prepared to discuss

Questions?

Overview of Syllabus

Three modules

- 1. Seminar
- 2. Methods
- 3. Project

Module 1: Seminar

© Human-Computer Interaction | Professor Mutlu | Week 1: Course Introduction

46

General Outline⁹

We will read <u>seminal</u> papers, discuss them online and in class.

- » You will read 1–2 papers per week and will find 1 resource (an academic paper, popular science article, a video) yourself
- » First 45 minutes of Tuesday class
- » I will give a 15-minute overview of the topic and lead a 30-minute in-class

⁹Image source

Online Discussion

Students reflect on the topic (from the readings and/or the resource they found) in online forum

- » Minimum of 250 words
- » Due Sunday midnights
- » Post on Canvas
- » Graded on timeliness, depth, and substantiveness

© Human-Computer Interaction | Professor Mutlu | Week 1: Course Introduction

Sam Lemley reading A Moving Target—The Evolution of Human-Computer In teraction, I was surprised to rying fields that contributed to Human Computer Interaction, as well as the various field plied. For instance, I did not realize that the field of Library Science was a fundamental co evelopment of what we consider HCI today. Library Science involves the efficient manage information, which makes perfect sense as an inspiration for the tools computers have be ditionally had not considered the overlap of programming languages research and HCI r es and a bugs code in programming languages at work, essentially all of my tasks involv outer. However, I understand that I benefit from later exploration into novice systems bi apping research which seemed to focus on expert systems and human factors. eresting to think about human factors and ergonomics as a distinct division of HCI. Be words like usability and design came to mind when I would think of HCI. I hadn't thou ared towards expert users. But as an example, a tool that takes time to master such a er for users who are comfortable with the commands, while a user with no experience lly be lost. This doesn't mean that Vim is poorly designed - undoubtedly countless h went into its design, and it works well for people who have taken the time to learn i "usable" for new people, this does n薂t mean that expert tools are developed with 48

5 Reply

Classroom Discussion

We will work together to try to come up with a list of takeaways.

- Instructor will give an overview \rightarrow
- Students will have a brief discussion, generating questions \rightarrow
- Instructor will collect questions and facilitate discussion \rightarrow
- Class will collectively distill the discussion to a set of takeaways \rightarrow We'll review the process on Tuesday.

Why are we doing this?

- **Dialectics** through discussion, we establish common themes/ \rightarrow concerns/ground
- **Reflection** you rarely get the chance to engage in open-ended \rightarrow discussion on research topics
- » **Trivium** you will get the grammar (language), logic (mechanics), and rhetoric (arguments) of a topic

Module 2: Methods

General Outline¹⁰

We will learn about HCI research methods through lectures, hands-on-activities, and assignments.

- » Every week, a new research method is presented
- » Reading a chapter from the textbook
- » Lecture for ~30 minutes
- » A~30-minute hands-on activity (graded for completeness)

¹⁰ Image source

Assignments

You will complete six 1–2–week–long assignments:

- » Assignment 0: Human subjects protection training
- » Assignment I.A-B: Qualitative/ethographic research
- » Assignment 2 A-B-C: Quantitative/experimental research

Always due Fridays at midnight

Textbook

Research Methods in Human–Computer Interaction, *Second Edition*, Lazar et al., 2017

Free through the <u>University Library</u>

Why are we doing this?

- **Learning** you will learn a sample of all of the major methods and tools \rightarrow used in HCI research
- **Practice** you will practice some of the critical ones in structured, \rightarrow guided ways

Module 3: Project

© Human-Computer Interaction | Professor Mutlu | Week 1: Course Introduction

56

General Outline

We will carry out a semester-long research project where you will connect and practice the **seminar** and **methods** modules.

- We will use the last 15 minutes of class on Tuesdays and Thursdays to \rightarrow discuss project goals, steps, deliverables
- Feedback during office hours, through deliverables \rightarrow
- Individual or pairs, expectations are different \rightarrow

Project Deliverable

We will incrementally write a four-to-six-page paper potentially submittable to an HCI conference.

- **Individuals:** 4 pages \rightarrow
- **Pairs:** 6 pages \rightarrow

Designing Persuasive Robots: How Robots Mig ople Using Vocal and

200

citations

2012

De Simone et al.

Is cheating a human function? The roles of presence, state hostility, nd enjoyment in an unfair video game 1 2

J.J. De Simone,4 Tessa Verbruggen, Li-Hsiang Kuo, Bilge Muth

tors thank Karyn Riddle for her valuable co ng author. Tel.: +1 816 589 1469. E-mail add

2015

Johnson et al.

Handheld or Handsfree? Remote Collabora

2017

48 citations

42 citations

12 citations

© Human-Computer Interaction | Professor Mutlu | Week 1: Course Introduction

Rakita et al.

A Motion Retargeting Method for Effective Mimicry-based eration of Robot Arn

2021

Kang et al.

1 citations

Project Topics

We will take inspiration from last year's best-paper-award winners at CHI and choose a topic following the algorithm:

>Skim a set of papers Focus on 2-3 based on interest/research style Read related work to understand gap Read what the paper did to understand where it fits >Determine what else remains unexplored from limitations Zoom out, choose topic, find partner (optional)

Project Deliverables¹¹

- » Project Topic 💙
- » Literature survey, RQs)
- » Method
- » Data
- » Analysis, results
- » Final paper

O Menu J	Children's Unbe
````	Cource Rich Text
> 🖿 figures	548 Families F12 and F17 preferred the reading rob
ACM-Reference-Form	while the remaining families preferred the fit
acmart.cls	robot. The sibling in F12 also preferred the
acmcopyright.sty	fitness robot.
🛢 bibliography.bib	549
fig materials tex	550-\subsubsection{Findings}
Efficient du 2 hoves tox	551
	552 %weird
× File outline	553 We identified three main primary factors of th
Introduction	designed unboxing experience from the thematic
 Related Work 	analysis for study 3:
Research through de	554 (1) The Appearance/Aesthetic of the box %pom p
Children's Perceptio	wallpaper, house shape
Co-Design with Child	555 (2) Character/social entity of the box and rob
 Method Study 1: Exploring C 	%audio, lights (remember that the electronic p
Study Design	were to give social character to box
Participants	556 (3) Perception/experiences (how 1,2 affected t
✓ Findings: Compo	experience) of the overall unboxing experience
Design of the	%exciting, interesting, connected, more social
 Social Intera Study 2: Co-Designin 	557
Study Design	558 (1) The Appearance/Aesthetic of the
Participants	559 Children showed high interest towards the phys
✓ Findings	shape and design of the box, pointing out to i
(1) Designs fr	the dearly magnet energing the integrated char
(2) Designing	outlet the rebetic permanent bod and the boyle
 Study 2.1: Feedback 	interior and exterior design elements. Childre
Study Design	felt the house shape gave the robot a designat
Participants	spot to ``stay sleep and eat'! making the
 Findings (1) A service 	overall experience more \textit{realistic}
(1) Appearan (2) Box as a S	Children also appreciated the creativity and
 Study 3: Evaluation o 	details in the box, such as the wallpaper
 Study Design 	reflecting the themes, the robot's bed. the
The Final Bo	exterior bricks, and windows. They explained t
Participants	these details made them more excited to meet t
 Findings (1) The Appe 	robot and open the box. The details of a box h
(2) Character	an easy opening (i.e., magnetic opening) and w
(2) Derceptie	

¹¹Image source

🔎 🖓 Review 🍄 Share 🔇 Submit 🕲 History 😂 Recompile , 🛓 Download PDF 🕞 ness The Unboxing Experience: Exploration and Design of Initia Interactions Between Children and Social Robots ANONYMOUS AUTHOR(S) SUBMISSION ID: 4096 e best introduced to their environments. The explosion of the "unboxing" phenomenon that in media suggests hat introduction is key to technology adoption where initial impressions are made. To better understand this pheno signing a positive unboxing experience in the context of social robots for children, we conducted three studies with families of d 8 to 12. (1) An exploratory free-play activity (n = 12) and (2) a co-design session (n = 11) informed the develo cing experience that was tested in (3) an eva om, ce of social robot can be improved through the design of a ocially to guide initial interactions and foster a positive child-robot relationship CCS Concepts: • Human-centered computing → Participatory design; User centered desig ot Additional Key Words and Phrases: participatory design, child robot interactions, social robots, unboxin arts ACM Reference Format Anonymous Author(s). 2018. The Unboxing Experience: Exploration and Design of Initial Interactions Between Children and Social Robots. In CHI'22: CHI'22: ACM/SIGCHI Conference on Human Factors in Computing. April 30 – May 6 2022, New Orleans, LA. ACM, he New York, NY, USA, 18 pages. https://doi.org/1 Box} ical he ouse, ing ed hat he ving

nce - Online LaTeX Editor Overlea

Why are we doing this?

- » Practicing research with different levels of uncertainty
 - Hands-on activities: controlled, structured, short
 - Assignments: semi-controlled, semi-structured, medium
 - Projects: uncontrolled, unstructured, long
- » This might feel redundant, but redundancy is often good!
- » Bridging the seminar and the methods, contextualizing the methods within the seminar topics

y t

Questions?

Course Policies

Grading

Assessments	Points	
Seminar: Participation in online discussions	15	
Methods: Hands-on activities	10	
Methods: Assignments	40	
Project	30	
General: Attendance, classroom participation	5	
Total	100	

Letter grade	Grade range	Descriptio
Α	93.5–100	Excellent
AB	89.5–93.4	Good wor requireme
В	83.5-89.4	Adequate requireme
BC	79.5–83.4	Slightly b elements o extension
С	73.5–79.4	Below ade turned in l
D	73.4–63.5	Well below elements of extension
F	63.5	Inadequat requested

© Human-Computer Interaction | Professor Mutlu | Week 1: Course Introduction

work (Exceeds expectations)

ck (Robustly meets all stated ents)

work (Meets the spirit of all stated ents)

below adequate (Missing small required or turned in late without approved

equate (Missing required elements or late without approved extension)

w adequate (Missing many required or turned in late without approved

te (Work not turned in, no extension

Rule of Thumb: If you complete every assignment, you should be getting an **A** or an **AB**. So, just come to class, do the work, and don't worry about your grade

Communication

Туре	Examples	Channe	
Question about course content	"R is giving me a singularity error;" "Should we be turning in our data file?"	is giving me a singularity error;" Post on nould we be turning in our data	
Personal questions	"I am traveling to a conference on <date>;" "I have to travel to my hom country because of an emergency!"</date>	Send me	
Feedback request	"Can we get feedback on our study design;" "Can you check if I'm doing this analysis right?"	Office he	

ours + appointment

During Class

Laptops/tablets: Laptop and tablet use is encouraged for the ongoing class and discouraged for anything else:

Engaging in Piazza; looking through readings, slides; researching. \rightarrow

We will have a Piazza thread open at every class for questions. \rightarrow

Phones: Should be put away.

In general, please strive to **be present**.

Late, Absence Policy

Late assignments: Will lose 20% of the total grade for the assignment for each day it is late. Only true emergencies (e.g., hospital visits) justify extensions.

Missing class: $E[m] = \{2, m = \{0, 1, \dots, 29\}$, so we will discount two absences from hands-on-activities/classroom discussion.

CS-770 HCI

Overview

Schedule

Syllabus

Q Search CS-770 HCI

Logistics

Course Website | Course Canvas \rightarrow

Office Hours

- **Instructor:** Tue 2:15–3:00 pm, \gg **Microsoft Teams**
- **TA:** Mon–Wed 3:00–3:30 pm, **>>** Microsoft Teams

© Human-Computer Interaction | Professor Mutlu | Week 1: Course Introduction

This course introduces graduate students in computer science, psychology, educational psychology, and other disciplines research topics, principles, and research methods in human-computer interaction (HCI), an interdisciplinary area concerned with the study of the interaction between humans and interactive computing systems. Pesearch in HCI looks at major social, cognitive, and physical phenomena surrounding human use of computers with the goal of understanding their impact and creating guidelines for the design and evaluation of software and physical products and services in industry.

The course consists of three modules: (1) seminar, which reviews major search topics in HCI through a set of readings, class presentations, and discussions; (2) methods, which covers qualitative and quantitative human-subjects research through lectures, tutorials, hands-on activities, and weekly assignments; and (3) **project**, where students complete a semester-long project, usually involving empirical research, that culminates in the writing of a short paper. Below is visual overview of the topics that will be covered in the seminar and methods modules.

Copyright © 2021 Professor Bilge Mutlu

Welcome to CS-770 Human-Computer Interaction!

Questions?
What's next?

Seminar \rightarrow

Readings due on Monday; *forum* comment — due on Monday \rightarrow

Method \rightarrow

Chapter reading due on Thursday; *Assignment* 0 — due Sep 24 \rightarrow

Project \rightarrow

We'll discuss on Tuesday; topic selection — due Sep 27 **>>**

73